Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.35 trang 33 Sách bài tập (SBT) Giải tích 12

Tìm m để hàm số để:

Tìm m để hàm số

a) \(y = {x^4} + ({m^2} - 4){x^2} + 5\) có 3 cực trị

b) \(y = (m - 1){x^4} - m{x^2} + 3\) có đúng một cực trị.

Hướng dẫn làm bài:

a) Hàm số có 3 cực trị khi và chỉ khi y’ = 0 có 3 nghiệm phân biệt , tức là :

\(y' = 4{x^3} + 2({m^2} - 4)x = 2x(2{x^2} + {m^2} - 4) = 0\)  có 3 nghiệm phân biệt

\(\Leftrightarrow {x^2} + {m^2} - 4 = 0\) có 2 nghiệm phân biệt khác 0

\(\Leftrightarrow 4 - {m^2} > 0 \Leftrightarrow  - 2 < m < 2\)

Vậy với  - 2 < m < 2 hàm số có 3 cực trị.

b) \(y' = 4(m - 1){x^3} - 2mx = 2x[2(m - 1){x^2} - m{\rm{]}}\)

Hàm số có đúng một cực trị khi y’ = 0 có đúng một nghiệm, tức là:

\(2x[2(m - 1){x^2} - m{\rm{] = 0}}\)  chỉ có nghiệm x = 0

Muốn vậy, phải có m = 1 hoặc \({m \over {2(m - 1)}} \le 0 \Leftrightarrow  0 \le m \le 1\)

Vậy với \(0 \le m \le 1\) hàm số đã cho có một cực trị duy nhất.

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.