Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.38 trang 34 Sách bài tập (SBT) Giải tích 12

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

Cho hàm số : \(y = {1 \over 4}{x^3} - {3 \over 2}{x^2} + 5\)

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho

b) Tìm các giá trị của tham số m để phương trình  x3 – 6x2 + m = 0  có 3 nghiệm thực phân biệt.

Hướng dẫn làm bài:

a) Tập xác định: D = R; \(y' = {3 \over 4}{x^2} - 3x\)     

\(y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 4 \hfill \cr} \right.\)

Hàm số đồng biến trên mỗi khoảng \(( - \infty ;0),(4; + \infty )\).

Hàm số nghịch biến trên mỗi khoảng (0; 4).

Hàm số đật cực đại tại x = 0, y = 5. Hàm số đạt cực tiểu tại x = 4, yCT = -3.

 

Đồ thị đi qua A(-2; -3); B(6; 5).

 

b)  

\(\eqalign{
& {x^3} - 6{x^2} + m = 0 \cr 
& \Leftrightarrow  {x^3} - 6{x^2} = - m \cr} \)             (1)

\( \Leftrightarrow  {1 \over 4}{x^3} - {3 \over 2}{x^2} + 5 = 5 - {m \over 4}\)

Số nghiệm thực phân biệt của phương trình (1) bằng số giao điểm phân biệt của đồ thị (C) và đường thẳng (d): \(y = 5 - {m \over 4}\)

Suy ra (1) có 3 nghiệm thực phân biệt khi và chỉ khi: \( - 3 < 5 - {m \over 4} < 5 \Leftrightarrow  0 < m < 32\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.