Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.4 trang 153 Sách bài tập (SBT) Đại số và giải tích 11

Cho hai dãy số (un) và (vn).

a)     Cho hai dãy số (un)(vn). Biết \(\lim {u_n} =  - \infty \) và \({v_n} \le {u_n}\) với mọi n. Có kết luận gì về giới hạn của dãy  (vn) khi \(n \to  + \infty \) ?

b)     Tìm vn với \({v_n} =  - n!\)

Giải :

a)     Vì \(\lim {u_n} =  - \infty \) nên \(\lim \left( { - {u_n}} \right) =  + \infty \). Do đó, \(\left( { - {u_n}} \right)\) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi.    (1)

Mặt khác, vì \({v_n} \le {u_n}\) với mọi n nên \(\left( { - {v_n}} \right) \ge \left( { - {u_n}} \right)\) với mọi n.    (2)

Từ (1) và (2) suy ra \(\left( { - {v_n}} \right)\) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi. Do đó, \(\lim \left( { - {v_n}} \right) =  + \infty \) hay \(\lim {v_n} =  - \infty \)

b)     Xét dãy số \(\left( {{u_n}} \right) =  - n\)

Ta có - n! <  - n hay \({v_n} < {u_n}\) với mọi n. Mặt khác, \(\lim {u_n} = \lim \left( { - n} \right) =  - \infty \)

Từ kết quả câu a) suy ra \(\lim {v_n} = \lim \left( { - n!} \right) =  - \infty \)

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Xem thêm tại đây: Bài 1. Giới hạn của dãy số