Bài 1.4 trang 153 Sách bài tập (SBT) Đại số và giải tích 11Cho hai dãy số (un) và (vn). a) Cho hai dãy số (un) và (vn). Biết \(\lim {u_n} = - \infty \) và \({v_n} \le {u_n}\) với mọi n. Có kết luận gì về giới hạn của dãy (vn) khi \(n \to + \infty \) ? b) Tìm vn với \({v_n} = - n!\) Giải : a) Vì \(\lim {u_n} = - \infty \) nên \(\lim \left( { - {u_n}} \right) = + \infty \). Do đó, \(\left( { - {u_n}} \right)\) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi. (1) Mặt khác, vì \({v_n} \le {u_n}\) với mọi n nên \(\left( { - {v_n}} \right) \ge \left( { - {u_n}} \right)\) với mọi n. (2) Từ (1) và (2) suy ra \(\left( { - {v_n}} \right)\) có thể lớn hơn một số dương lớn tuỳ ý, kể từ một số hạng nào đó trở đi. Do đó, \(\lim \left( { - {v_n}} \right) = + \infty \) hay \(\lim {v_n} = - \infty \) b) Xét dãy số \(\left( {{u_n}} \right) = - n\) Ta có - n! < - n hay \({v_n} < {u_n}\) với mọi n. Mặt khác, \(\lim {u_n} = \lim \left( { - n} \right) = - \infty \) Từ kết quả câu a) suy ra \(\lim {v_n} = \lim \left( { - n!} \right) = - \infty \)
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Giới hạn của dãy số
|
Tính giới hạn của các dãy số có số hạng tổng quát sau đây
Có kết luận gì về giới hạn của dãy số (un)