Bài 1.49 trang 36 Sách bài tập (SBT) Giải tích 12Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1 Cho hàm số: y = 4x3 + mx (m là tham số) (1) a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1. b) Viết phương trình tiếp tuyến của (C) song song với đường thẳng y = 13x + 1. Hướng dẫn làm bài: a) \(y = 4{x^3} + x,y' = 12{x^2} + 1 > 0,\forall x \in R\) Bảng biến thiên:
Đồ thị:
b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì \(f'({x_0}) = 12x_0^2 + 1 = 13\) (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: \({x_0} = \pm 1\) Vậy có hai tiếp tuyến phải tìm là \(y = 13x \pm 8\) c) Vì y’ = 12x2 + m nên : \(m \ge 0:y'' = - 6({m^2} + 5m)x + 12m\) +) Với \(m \ge 0\) ta có y’ > 0 (khi m = 0 ; y’ = 0 tại x = 0). Vậy hàm số (1) luôn luôn đồng biến khi \(m \ge 0:y'' = - 6({m^2} + 5m)x + 12m\) +) Với m < 0 thì \(y{\rm{ }} = {\rm{ }}0 \Leftrightarrow x = \pm \sqrt {{{ - m} \over {12}}} \) Từ đó suy ra: y’ > 0 với \( - \infty < x < - \sqrt {{{ - m} \over {12}}} \) và \(\sqrt {{{ - m} \over {12}}} < x < + \infty \) y’ < 0 với \( - \sqrt {{{ - m} \over {12}}} < x < \sqrt {{{ - m} \over {12}}} \) Vậy hàm số (1) đồng biến trên các khoảng \(( - \infty ; - \sqrt {{{ - m} \over {12}}} ),(\sqrt {{{ - m} \over {12}}} ; + \infty )\) và nghịch biến trên khoảng \(( - \sqrt {{{ - m} \over {12}}} ;\sqrt {{{ - m} \over {12}}} )\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập Chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
|
Xác định m để hàm số (1) luôn luôn có cực đại, cực tiểu.
Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?
Xác định a để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.