Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.57 trang 46 Sách bài tập (SBT) Toán Hình học 10

Cho tam giác ABC. Gọi M, N , P là những điểm được xác định như sau

Cho tam giác ABC. Gọi M, N , P là những điểm được xác định như sau:

\(\overrightarrow {MB}  = 3\overrightarrow {MC} ,\overrightarrow {NC}  = 3\overrightarrow {NA} ,\overrightarrow {PA}  = 3\overrightarrow {PB} \)

a) Chứng minh \(2\overrightarrow {OM}  = 3\overrightarrow {OC}  - \overrightarrow {OB} \) với mọi điểm O.

b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm.

Gợi ý làm bài

(Xem h.1.69)

a) $\(3\overrightarrow {OC}  - \overrightarrow {OB}  = 3(\overrightarrow {OM}  + \overrightarrow {MC} ) - (\overrightarrow {OM}  + \overrightarrow {MB} )\)

\(= 3(\overrightarrow {OM}  - \overrightarrow {OM} ) + (3\overrightarrow {MC}  - \overrightarrow {MB} ) = 2\overrightarrow {OM} \)

b) Gọi S, Q và R lần lượt là trung điểm của BC, CA và AB.

\(\overrightarrow {MB}  = 3\overrightarrow {MC}  =  > \overrightarrow {CM}  = \overrightarrow {SC} \)

\(\overrightarrow {NC}  = 3\overrightarrow {NA}  =  > \overrightarrow {AN}  = \overrightarrow {CQ} \)

\(\overrightarrow {PA}  = 3\overrightarrow {PB}  =  > \overrightarrow {BP}  = \overrightarrow {RB}  = \overrightarrow {QS} \)

Gọi G là trọng tâm của tam giác ABC thì \(\overrightarrow {GA}  + \overrightarrow {BG}  + \overrightarrow {GC}  = \overrightarrow 0\)

Ta có:

\(\eqalign{
& \overrightarrow {GM} + \overrightarrow {GN} + \overrightarrow {GP} \cr
& = \overrightarrow {GC} + \overrightarrow {CM} + \overrightarrow {GA} + \overrightarrow {AN} + \overrightarrow {GB} + \overrightarrow {BP} \cr} \)

\(\overrightarrow { = (GA}  + \overrightarrow {GC}  + \overrightarrow {GC} ) + (\overrightarrow {SC}  + \overrightarrow {CQ}  + \overrightarrow {QS} )\)

\( = \overrightarrow 0  + \overrightarrow 0 \)

Vậy G là trọng tâm của tam giác MNP.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.