Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.6 trang 8 Sách bài tập (SBT) Giải tích 12

Chứng minh các phương trình sau có nghiệm duy nhất

Chứng minh các phương trình sau có nghiệm duy nhất

a) \(3(c{\rm{os x  -  1)  + }}{\rm{2sin x  + 6x  =  0}}\)

b)  \(4x + c{\rm{os x  -  2sin x  -  2  =  0}}\)

c) \( - {x^3} + {x^2} - 3x + 2 = 0$\) 

d) \({x^5} + {x^3} - 7 = 0\)

Hướng dẫn làm bài

a) Đặt y = 3(cos x – 1) + 2sin x + 6

Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈  R

Ta có: y( ) = 0 và ý = -3sin x + 2cos x + 6 >0,  x ∈  R.

Hàm số đồng biến trên R và có một nghiệm \(x = \pi \)

Vậy phương trình đã cho có một nghiệm duy nhất.

b) Đặt \(y = 4x + \cos x - 2\sin x - 2\)

Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R

Ta có: y(0) = 1 – 2 = -1 < 0 ; \(y(\pi ) = 4\pi  - 3 > 0\) .

Hàm số liên tục trên  \({\rm{[}}0;\pi {\rm{]}}\) và y’(0) < 0 nên tồn tại \({x_0} \in (0;\pi )\) sao cho \(y({x_0}) = 0\) .

Suy ra phương trình có một nghiệm \({x_0}\) .

c) Đặt y =  – x3 + x2 – 3x + 2

Hàm số xác định, liên tục và có đạo hàm trên R.

Ta có: y’ = – x2 + 2x – 3 < 0, \(y(\pi ) = 4\pi  - 3 > 0\), x ∈ R.

Vì a = -3 < 0 và . Suy ra y nghịch biến trên R.

Mặt khác  y(-1) = 1 + 1 +3 + 2 = 7 > 0

                 y(1) = -1  +1 – 3 + 2 = -1 < 0

Hàm số liên tục trên [-1; 1] và y(-1)y(1) < 0 cho nên tồn tại \({x_0} \in {\rm{[}} - 1;1]\) sao cho \(y({x_0}) = 0\) .

Suy ra phương trình đã cho có đúng một nghiệm.

d) Đặt  y = x5 + x3 – 7

Hàm số xác định, liên tục và có đạo hàm trên R.

Ta có: y(0) = -7 < 0 ; y(2) = 32 + 8 – 7 = 33 > 0

Hàm số liên tục trên [0; 2] và y(0) y(2) < 0 cho nên tồn tại \({x_0} \in (0;2)\) sao cho \(y({x_0}) = 0\)

Mặt khác \(y' = 5{x^4} + 3{x^2} = {x^2}(5{x^2} + 3) \ge 0,\forall x \in R\)

=> Hàm số đồng biến trên \(( - \infty ; + \infty )\).

Suy ra phương trình đã cho có đúng một nghiệm. 

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.