Loading [Contrib]/a11y/accessibility-menu.js
💥 2K10! HOT LIVE: HƯỚNG DẪN CHỌN TỔ HỢP MÔN VÀO LỚP 10 (FREE)

Dành cho Hà Nội và các tỉnh vừa công bố điểm (20H30 tối nay!)

ĐĂNG KÝ NGAY
Xem chi tiết

Bài 16 trang 8 SBT Hình học 10 Nâng cao

Giải bài tập Bài 16 trang 8 SBT Hình học 10 Nâng cao

Điểm \(M\) gọi là chia đoạn thẳng \(AB\) theo tỉ số \(k \ne 1\) nếu \(\overrightarrow {MA}  = k\overrightarrow {MB} \).

a) Xét vị trí của điểm \(M\) đối với hai điểm \(A, B\) trong các trường hợp:

\(k \le 0;0 < k < 1;\,k > 1;\,k =  - 1.\)

b) Nếu \(M\) chia đoạn thẳng \(AB\) theo tỉ số \(k\,\) ( \(k \ne 1\) và \(k \ne 0\)) thì \(M\) chia đoạn thẳng \(BA\)  theo tỉ số nào?

c) Nếu \(M\) chia đoạn thẳng \(AB\) theo tỉ số \(k\,\) ( \(k \ne 1\) và \(k \ne 0\)) thì \(A\) chia đoạn thẳng \(MB\)  theo tỉ số nào? \(B\) chia đoạn thẳng \(MA\)  theo tỉ lệ nào?

d) Chứng minh rằng: Nếu điểm \(M\) chia đoạn thẳng \(AB\) theo tỉ số \(k \ne 1\) thì với điểm \(O\) bất kì, ta luôn có

\(\overrightarrow {OM}  = \dfrac{{\overrightarrow {OA}  - k\overrightarrow {OB} }}{{1 - k}}\).

Giải

a) Nếu \(k \le 0\) thì \(M\) nằm giữa \(A\) và \(B\), hoặc trùng  với \(A.\)

Nếu \(0 < k < 1\) thì \(A\) nằm giữa \(M\) và \(B\).

Nếu \(k > 1\) thì \(B\) nằm giữa \(A\) và \(M\).

Nếu \(k = -1\) thì \(M\) là trung điểm của đoạn thẳng \(AB\).

b) Theo giả thiết: \(k \ne 0\) và \(k \ne 1\) ta có

\(M\) chia đoạn thẳng \(AB\) theo tỉ số \(k\, \Leftrightarrow \,\overrightarrow {MA}  = k\overrightarrow {MB}\)

\(\Leftrightarrow \,\,\overrightarrow {MB}  = \dfrac{1}{k}\overrightarrow {MA} \)

\(\Leftrightarrow \,\,M\) chia đoạn thẳng BA theo tỉ số \(\dfrac{1}{k}\).

c) M chia đoạn thẳng AB theo tỉ số  \(k\,\, \Leftrightarrow \,\,\overrightarrow {MA}  = k\overrightarrow {MB}\)

\(\Leftrightarrow \,\,\overrightarrow {MA}  = k(\overrightarrow {MA}  + \overrightarrow {AB} )\) hay \(\overrightarrow {AM}  = \dfrac{k}{{k - 1}}\overrightarrow {AB} \,\, \Leftrightarrow \,\,A\) chia đoạn thẳng MB theo tỉ số \(\dfrac{k}{{k - 1}}\).

M chia đoạn thẳng AB theo tỉ số 

\(\begin{array}{l}k\,\, \Leftrightarrow \,\,\overrightarrow {MA}  = k\overrightarrow {MB} \,\,\\ \Leftrightarrow \,\,\overrightarrow {BA}  - \overrightarrow {BM}  = k\overrightarrow {MB} \,\,\,\,\\ \Leftrightarrow \,\,\overrightarrow {BM}  = \dfrac{1}{{1 - k}}\overrightarrow {BA} \,\end{array}\)

\( \Leftrightarrow B\) chia đoạn thẳng MA theo tỉ số \(\dfrac{1}{{1 - k}}\)

d) M chia đoạn thẳng AB theo tỉ số \(k\,\, \Leftrightarrow \,\,\overrightarrow {MA}  = k\overrightarrow {MB} \)

\(\Leftrightarrow \,\,\overrightarrow {OA}  - \overrightarrow {OM}  = k(\overrightarrow {OB}  - \overrightarrow {OM} )\) (trong đó O là điểm bất kì )

\(\eqalign{  &  \Leftrightarrow \,\,\overrightarrow {OA}  - k\overrightarrow {OB}  = (1 - k)\overrightarrow {OM}   \cr  &  \Leftrightarrow \,\overrightarrow {OM}  = {{\overrightarrow {OA}  - k\overrightarrow {OB} } \over {1 - k}} \cr} \)

Sachbaitap.com