Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.8 trang 100 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh rằng với các số thực:

Chứng minh rằng với các số thực \({a_1},{a_2},{a_3},...,{a_n}\left( {n \in N*} \right)\), ta có

\9\left| {{a_1} + {a_2} + ... + {a_n}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_n}} \right|\)

Giải:   

Với n = 1 thì \(\left| {{a_1}} \right| = \left| {{a_1}} \right|\)

Với n = 2 thì \(\left| {{a_1} + {a_2}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right|\). Đây là bất đẳng thức khá quen thuộc và dấu bằng xảy ra khi \({a_1},{a_2}$\) cùng dấu.

Giả sử bất đẳng thức đúng với \(n = k \ge 2\) . Đặt \({a_1} + {a_2} + ... + {a_k} = A\) ta có  

\(\left| A \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right|\)    (1)

Mà \(\left| {A + {a_{k + 1}}} \right| \le \left| A \right| + \left| {{a_{k + 1}}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right| + \left| {{a_{k + 1}}} \right|\)

Nên \(\left| {{a_1} + {a_2} + ... + {a_k} + {a _{k + 1}}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right| + \left| {{a_{k + 1}}} \right|\), tức là bất đẳng thức đúng với \(n = k + 1\).

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.