Bài 1.8 trang 100 Sách bài tập (SBT) Đại số và giải tích 11Chứng minh rằng với các số thực: Chứng minh rằng với các số thực \({a_1},{a_2},{a_3},...,{a_n}\left( {n \in N*} \right)\), ta có \9\left| {{a_1} + {a_2} + ... + {a_n}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_n}} \right|\) Giải: Với n = 1 thì \(\left| {{a_1}} \right| = \left| {{a_1}} \right|\) Với n = 2 thì \(\left| {{a_1} + {a_2}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right|\). Đây là bất đẳng thức khá quen thuộc và dấu bằng xảy ra khi \({a_1},{a_2}$\) cùng dấu. Giả sử bất đẳng thức đúng với \(n = k \ge 2\) . Đặt \({a_1} + {a_2} + ... + {a_k} = A\) ta có \(\left| A \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right|\) (1) Mà \(\left| {A + {a_{k + 1}}} \right| \le \left| A \right| + \left| {{a_{k + 1}}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right| + \left| {{a_{k + 1}}} \right|\) Nên \(\left| {{a_1} + {a_2} + ... + {a_k} + {a _{k + 1}}} \right| \le \left| {{a_1}} \right| + \left| {{a_2}} \right| + ... + \left| {{a_k}} \right| + \left| {{a_{k + 1}}} \right|\), tức là bất đẳng thức đúng với \(n = k + 1\).
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1. Phương pháp quy nạp toán học
|
Viết 5 số hạng đầu và khảo sát tính tăng, giảm của các dãy số (un) biết
Trong các dãy số (un) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn ?