Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 19 trang 199 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng Oxy, cho hình chữ nhật ABCD

Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có đỉnh A(2;-1), phương trình một đường chéo là x - 7y + 15 = 0 và độ dài cạnh AB = \(3\sqrt 2 \). Tìm tọa độ các đỉnh A, C, D biết ${y_B}$ là số nguyên

Gợi ý làm bài

(Xem hình 3.42)

Do tọa độ A không thỏa mãn phương trình đường thẳng x - 7y + 15 = 0 nên phương trình đường chéo BD là : x - 7y + 15 = 0, tọa độ điểm B là B(7t - 15;t).

Ta có : 

\(AB = 3\sqrt 2  \Leftrightarrow {\left( {7t - 17} \right)^2} + {\left( {t + 1} \right)^2} = 18\)

\(\eqalign{
& \Leftrightarrow 50{t^2} - 236t + 272 = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 2 \hfill \cr
t = {{68} \over {25}}\,\,\,(*) \hfill \cr} \right. \cr} \)

( (*) loại)

Vậy B(-1 ; 2)

Ta có \({\overrightarrow n _{AD}} = \overrightarrow {AB}  = ( - 3;3) =  - 3(1; - 1)\)

Phương trình đường thẳng AD là : 

\(\eqalign{
& 1.(x - 2) - 1.(y + 1) = 0 \cr
& \Leftrightarrow x - y - 3 = 0. \cr} \)

Tọa độ điểm D là nghiệm của hệ:

\(\left\{ \matrix{
x - y - 3 = 0 \hfill \cr
x - 7y + 15 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 6 \hfill \cr
y = 3. \hfill \cr} \right.\)

Vậy D(6 ; 3).

Ta có AC và BD cắt nhau tại trung điểm I.

Suy ra:

\(\eqalign{
& \left\{ \matrix{
{{{x_C} + {x_A}} \over 2} = {{{x_B} + {x_D}} \over 2} = {5 \over 2} \hfill \cr
{{{y_C} + {y_A}} \over 2} = {{{y_B} + {y_D}} \over 2} = {5 \over 2} \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
{x_C} = 3 \hfill \cr
{y_C} = 6. \hfill \cr} \right. \cr} \)

Vậy C(3 ; 6).

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: I-Đề toán tổng hợp