Bài 2.10 trang 70 Sách bài tập (SBT) Hình học 11Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây: a) (SAC) và (SBD); b) (SAB) và (SCD); c) (SAD) và (SBC) Giải: (h.2.28) a) Ta có: \(\left\{ \matrix{ Giả sử: \(AC \cap B{\rm{D}} = O \Rightarrow \left\{ \matrix{ \(\eqalign{ b) Ta có : \(\left\{ \matrix{ Ta lại có \(\left\{ \matrix{ c) Lập luận tương tự câu b) ta có \( \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = Sy\) và \(Sy\parallel AD\parallel BC\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
|
Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC , M là một điểm tùy ý trên cạnh AD.
Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Cho tứ diện ABCD có I và J lần lượt là trọng tâm các tam giác ABC và ABD.