Bài 2.23 trang 79 Sách bài tập (SBT) Hình học 11Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng \(\left( \alpha \right)\) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A’, B’, C’ và D’. a) Chứng minh rằng \(\left( {Ax,By} \right)\parallel \left( {Cz,Dt} \right)\) và \(\left( {Ax,Dt} \right)\parallel \left( {By,Cz} \right)\) b) Tứ giác A’B’C’D’ là hình gì? c) Chứng minh \(AA' + CC' = BB' + DD'\). Giải:
a) Ta có : \(\left\{ \matrix{ \( \Rightarrow Ax\parallel \left( {Cz,Dt} \right)\) \(\left. \matrix{ Từ \(Ax,AB \subset \left( {Ax,By} \right)\) suy ra \(\left( {Ax,By} \right)\parallel \left( {Cz,Dt} \right)\) Tương tự ta có \(\left( {Ax,Dt} \right)\parallel \left( {By,Cz} \right)\) b) \(\left\{ \matrix{ \(\left\{ \matrix{ Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành. c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra \(OO' = {{AA' + CC'} \over 2}\) Tương tự ta có: \(OO' = {{BB' + DD'} \over 2} \Rightarrow AA' + CC' = BB' + DD'\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Hai mặt phẳng song song
|
Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN.
Cho hình lăng trụ tam giác ABCA’B’C’ có các cạnh bên là AA’, BB’, CC’. Gọi I và I’tương ứng là trung điểm của hai cạnh BC và B’C’.
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trung điểm của A’B’.
Cho hai hình bình hành ABCD và ABEF không nằm cùng trong một mặt phẳng. Gọi M và N là hai điểm di động tương ứng trên AD và BE sao cho