Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.28 trang 92 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng Oxy cho bốn điểm

Trong mặt phẳng Oxy cho bốn điểm A(3;4), B(4;1), C(2; - 3), D( - 1;6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.

Gợi ý làm bài

Muốn chứng minh tứ giác ABCD nội tiếp được trong một đường tròn, ta chứng minh tứ giác này có hai góc đối bù nhau. Khi đó hai góc này có cô sin đối nhau.

Theo giả thiết ta có:

\(\eqalign{
& \overrightarrow {AB} = (1; - 3),\overrightarrow {AD} = ( - 4;2), \cr
& \overrightarrow {CB} = (2;4);\overrightarrow {CD} = ( - 3;9) \cr} \)

Do đó:

\(\eqalign{
& \cos (\overrightarrow {AB} ,\overrightarrow {AD} ) = {{\overrightarrow {AB} .\overrightarrow {AD} } \over {\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|}} \cr
& = {{1.( - 4) + ( - 3).2} \over {\sqrt {1 + 9} .\sqrt {16 + 4} }} = {{ - 10} \over {\sqrt {200} }} = - {1 \over {\sqrt 2 }} \cr} \)

\(\eqalign{
& \cos (\overrightarrow {CB} ,\overrightarrow {AD} ) = {{\overrightarrow {CB} .\overrightarrow {CD} } \over {\left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {CD} } \right|}} \cr
& = {{2.( - 3) + 4.9} \over {\sqrt {4 + 16} .\sqrt {9 + 81} }} = {{30} \over {\sqrt {1800} }} = {1 \over {\sqrt 2 }} \cr} \)

Vì \(\cos (\overrightarrow {AB} ,\overrightarrow {AD} ) =  - \cos (\overrightarrow {CB} ,\overrightarrow {CD} )\) nên hai góc này bù nhau. Vậy tứ giác ABCD nội tiếp được trong một đường tròn.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.