Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.33 trang 102 Sách bài tập (SBT) Toán Hình học 10

Chứng minh rằng

Gọi \({m_a},{m_b},{m_c}\) là các trung tuyến lần lượt ứng với các cạnh a, b, c của tam giác ABC.

a) Tính \({m_a}\), biết rằng a = 26, b = 18, c = 16

b) Chứng minh rằng: \(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)

Gợi ý làm bài

a) \(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{{18}^2} + {{16}^2}}}{2} - \dfrac{{{{26}^2}}}{4}\)

\(\eqalign{
& = {{324 + 256} \over 2} - {{676} \over 4} = {{484} \over 4} \cr
& = > {m_a} = {{22} \over 2} = 11 \cr} \)

b) \(\left\{ \matrix{
m_a^2 = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4} \hfill \cr
m_b^2 = {{{a^2} + {c^2}} \over 2} - {{{b^2}} \over 4} \hfill \cr
m_c^2 = {{{a^2} + {b^2}} \over 2} - {{{c^2}} \over 4} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4m_a^2 = 2({b^2} + {c^2}) - {a^2}\;(1) \hfill \cr
4m_b^2 = 2({a^2} + {c^2}) - {b^2}\;(2) \hfill \cr
4m_c^2 = 2({a^2} + {b^2}) - {c^2}\;(3) \hfill \cr} \right.\)

Cộng (1), (2), (3) theo vế với vế ta được:

\(4(m_a^2 + m_{_b}^2 + m_{_c}^2) = 3({a^2} + {b^2} + {c^2})\)

Sachbaitap.com

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.