Bài 2.39 trang 84 Sách bài tập (SBT) Hình học 11Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA’, BB’, CC’ song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA’, BB’, CC’ song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. a) Chứng minh \(\left( {IGK} \right)\parallel \left( {BB'CC'} \right)\). b) Chứng minh rằng \(\left( {A'GK} \right)\parallel \left( {AIB'} \right)\). Giải: Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có: \(I \in BM,G \in C'M,K \in B'M'\) Theo tính chất trọng tâm của tam giác ta có: \({{MI} \over {MB}} = {{MG} \over {MC'}} = {1 \over 3} \Rightarrow IG\parallel BC'\); \({{MI} \over {MB}} = {{M'K} \over {M'B'}} = {1 \over 3}\) và \(MM'\parallel BB' \Rightarrow IK\parallel BB'\) Ta có : \(\left\{ \matrix{ \(\left\{ \matrix{ Mặt khác IG và \(IK \subset \left( {IGK} \right)\) nên \(\left( {IGK} \right)\parallel \left( {BB'C'C} \right)\) b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF). Ta có \(B'E\parallel CF\) (do B’FCE là hình bình hành ) và \(AE\parallel A'F\) nên \(\left( {AIB'} \right)\parallel \left( {A'GK} \right)\). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|
Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA’ và CC’. Một điểm P nằm trên cạnh bên DD’.
Cho hình hộp ABCD.A’B’C’D’. Hai điểm M và N lần lượt nằm trên hai cạnhAD và CC’ sao cho
a) Chứng minh rằng hai đường chéo AC’ và A’C cắt nhau và hai đường chéo BD’ và B’Dcắt nhau.
b) Giả sử đường thẳng M1M2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.