Bài 2.4 trang 50 sách bài tập (SBT) – Hình học 12.Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h và góc . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp. Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h và góc \(\widehat {SAB} = \alpha (\alpha > {45^0})\) . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp. Hướng dẫn làm bài: Gọi r là bán kính đáy của hình nón ta có OA = r, SO = h và SA = SB = SC = SD = l là đường sinh của hình nón. Gọi I là trung điểm của đoạn AB, ta có: \(\left\{ {\matrix{{S{A^2} = S{O^2} + O{A^2}} \cr {AI = SA.\cos \alpha } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{l^2} = {h^2} + {r^2}(1)} \cr {{{r\sqrt 2 } \over 2} = l\cos \alpha (2)} \cr} } \right.\) \((2) \Rightarrow r = \sqrt 2 l\cos \alpha \) \((1) \Rightarrow {l^2} = {h^2} + 2{l^2}{\cos ^2}\alpha\) \(\Rightarrow {h^2} = {l^2}(1 - 2{\cos ^2}\alpha )\) \(\Rightarrow {l^2} = {{{h^2}} \over {1 - 2{{\cos }^2}\alpha }}\) \(\Rightarrow l = {h \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}\) Do đó \(r = \sqrt 2 l\cos \alpha = {{\sqrt 2 h\cos \alpha } \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}\) \({S_{xq}} = \pi rl = \pi .{{\sqrt 2 h\cos \alpha } \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}.{h \over {\sqrt {1 - 2{{\cos }^2}\alpha } }} = {{\pi \sqrt 2 {h^2}\cos \alpha } \over {1 - 2{{\cos }^2}\alpha }}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Khái niệm về mặt tròn xoay
|
Chứng minh rằng trong một khối nón tròn xoay, góc ở đỉnh là góc lớn nhất trong số các góc được tạo nên bởi hai đường sinh của khối nón đó.
Cho khối nón có bán kính đáy r = 12 cm và có góc ở đỉnh là . Hãy tính diện tích của thiết diện đi qua hai đường sinh vuông góc với nhau.
Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A.
Cho mặt trụ xoay và một điểm S cố định nằm ngoài . Một đường thẳng d thay đổi luôn luôn đi qua S cắt tại A và B. Chứng minh rằng trung điểm I của đoạn thẳng AB luôn luôn nằm trên một mặt trụ xác định.