Bài 2.47 trang 86 Sách bài tập (SBT) Hình học 11Cho hình chóp S.ABCD có đáy là hình thang ABCD (có đáy nhỏ BC). Gọi M, N lần lượt là trung điểm của AB và SD, O là giao điểm của AC và DM. Cho hình chóp S.ABCD có đáy là hình thang ABCD (có đáy nhỏ BC). Gọi M, N lần lượt là trung điểm của AB và SD, O là giao điểm của AC và DM. a) Tìm giao điểm của MN và mặt phẳng (SAC). b) Tìm thiết diện của hình chóp với mặt phẳng (NBC). Thiết diện đó là hình gì? Giải:
(h.2.73) a) Gọi \(O = AC \cap MD\). Trong mặt phẳng (SMB) gọi \(I = SO \cap MN\). Ta có: \(I = \left( {SAC} \right) \cap MN\) b) \(A{\rm{D}}\parallel BC\left( {BC \subset \left( {SBC} \right)} \right)\) \( \Rightarrow A{\rm{D}}\parallel \left( {SBC} \right)\). Mặt phẳng (SAD) cắt mặt phẳng (NBC) theo giao tuyến \(NP\parallel A{\rm{D}}\left( {P \in SA} \right)\). Ta có thiết diện cần tìm là hình thang BCNP. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
II. Đề toán tổng hợp
|
Cho hình chóp S.ABCDcó đáy là tứ giác ABCD. Gọi G1 và G1 lần lượt là trọng tâm của các tam giác SBC và SCD
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B’, C’, D’ sao cho đường thẳng B’C’cắt đường thẳng BC tại K, đường thẳng C’D’ cắt đường thẳng CD tại J, đường thẳng D’B’ cắt đường thẳng DB tại I.
Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:
Cho tứ diện ABCD. Lấy điểm M thuộc đoạn AB. Gọi N, P là các điểm thuộc miền trong các tam giác ACD, BCD tương ứng. Xác định thiết diện tạo bởi mặt phẳng (MNP) cắt tứ diện ABCD.