Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.50 trang 133 Sách bài tập (SBT) Giải tích 12

Giải các phương trình sau:

Giải các phương trình sau:

a) \({9^x} - {3^x} - 6 = 0\)                                                      

b) \({e^{2x}} - 3{e^x} - 4 + 12{e^{ - x}} = 0\)

c) \({3.4^x} + \frac{1}{3}{.9^{x + 2}} = {6.4^{x + 1}} - \frac{1}{2}{.9^{x + 1}}\)

d) \({2^{{x^2} - 1}} - {3^{{x^2}}} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}\)

Hướng dẫn làm bài:

a) x = 1

b) Đặt \(t = {e^x}(t > 0)\) , ta có phương trình \({t^2} - 3t - 4 + \frac{{12}}{t} = 0\)    hay 

\(\eqalign{
& {t^3} - 3{t^2} - 4t + 12 = 0 \cr
& \Leftrightarrow (t - 2)(t + 2)(t - 3) = 0 \cr
& \Leftrightarrow \left[ {\matrix{{t = 2} \cr {t = - 2(loại)} \cr {t = 3} \cr} } \right. \cr} \)

Do đó  

\(\left[ {\begin{array}{*{20}{c}}
{{e^x} = 2}\\a
{{e^x} = 3}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x = \ln 2}\\
{x = \ln 3}
\end{array}} \right.\)

c)

\(\eqalign{
& {3.4^x} + {27.9^x} = {24.4^x} - {9 \over 2}{.9^x} \cr
& \Leftrightarrow {63.9^x} = {42.4^x} \Leftrightarrow {\left( {{9 \over 4}} \right)^x} = {2 \over 3} \cr} \)

\(\Leftrightarrow {({3 \over 2})^{2x}} = {({3 \over 2})^{ - 1}} \Leftrightarrow 2x =  - 1 \Leftrightarrow x =  - {1 \over 2}\)                                      

d)

\(\eqalign{
& {1 \over 2}{.2^{{x^2}}} - {3^{{x^2}}} = {1 \over 3}{.3^{{x^2}}} - {4.2^{{x^2}}} \cr
& \Leftrightarrow {9 \over 2}{.2^{{x^2}}} = {4 \over 3}{.3^{{x^2}}} \Leftrightarrow {\left( {{2 \over 3}} \right)^{{x^2}}} = {\left( {{2 \over 3}} \right)^3} \cr
& \Leftrightarrow {x^2} = 3 \Leftrightarrow \left[ {\matrix{{x = \sqrt 3 } \cr {x = - \sqrt 3 } \cr} } \right. \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.