Bài 2.52 trang 87 Sách bài tập (SBT) Hình học 11Cho hình chóp S.ABCD. Gọi E, F, G lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp. Cho hình chóp S.ABCD. Gọi E, F, G lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp. Giải: (h.2.78) Gọi \(E' = SE \cap AB,F' = SF \cap BC,G' = SG \cap C{\rm{D}}\). Trong mặt phẳng (SE’F’), gọi \(I = EF \cap E'F',K = FG \cap F'G'\). Ta có: \(IK = \left( {EFG} \right) \cap \left( {ABCD} \right)\). Gọi \(I' = AB \cap IK,K' = C{\rm{D}} \cap IK\). Gọi \(M = SA \cap I'E,N = SB \cap I'E\) và \(P = SC \cap K'G,Q = S{\rm{D}} \cap K'G\) Thiết diện tạo bởi mp (EFG) cắt hình chóp là tứ giác MNPQ. Chú ý: Vị trí thiết diện có thể thay đổi tùy theo vị trí của E, G, F. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
II. Đề toán tổng hợp
|
Cho hình lập phương ABCD.A’B’C’D’. Gọi R, N, Q là các điểm thuộc các cạnh A’D’, BC, C’D’.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gợi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC’, C’D’. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD.