Bài 2.52 trang 87 Sách bài tập (SBT) Hình học 11Cho hình chóp S.ABCD. Gọi E, F, G lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp. Cho hình chóp S.ABCD. Gọi E, F, G lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp. Giải: (h.2.78) Gọi \(E' = SE \cap AB,F' = SF \cap BC,G' = SG \cap C{\rm{D}}\). Trong mặt phẳng (SE’F’), gọi \(I = EF \cap E'F',K = FG \cap F'G'\). Ta có: \(IK = \left( {EFG} \right) \cap \left( {ABCD} \right)\). Gọi \(I' = AB \cap IK,K' = C{\rm{D}} \cap IK\). Gọi \(M = SA \cap I'E,N = SB \cap I'E\) và \(P = SC \cap K'G,Q = S{\rm{D}} \cap K'G\) Thiết diện tạo bởi mp (EFG) cắt hình chóp là tứ giác MNPQ. Chú ý: Vị trí thiết diện có thể thay đổi tùy theo vị trí của E, G, F. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
II. Đề toán tổng hợp
|
Cho hình lập phương ABCD.A’B’C’D’. Gọi R, N, Q là các điểm thuộc các cạnh A’D’, BC, C’D’.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gợi N, P, Q theo thứ tự là trung điểm của các cạnh BC, CC’, C’D’. Tìm diện tích thiết diện tạo bởi mặt phẳng (NPQ) cắt hình lập phương.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cho điểm M thay đổi trên cạnh SD
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và cho M là một điểm thay đổi trên cạnh SC. Một mặt phẳng (P) thay đổi qua AM và song song với BD.