Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.66 trang 106 Sách bài tập (SBT) Toán Hình học 10

Trên mặt phẳng tọa độ Oxy cho hai điểm

Trên mặt phẳng tọa độ Oxy cho hai điểm A(1;3) và B(4;2).

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA = DB;

b) Tính chu vi tam giác OAB;

c) Tính diện tích tam giác OAB.

Gợi ý làm bài

a) Vì điểm D nằm trên Ox nên tọa độ của nó có dạng D(x;0)

Theo giả thiết DA = DB nên \(D{A^2} = D{B^2}\)

Do đó: 

\({(1 - x)^2} + {3^2} = {(4 - x)^2} + {2^2}\)

\(\eqalign{
& \Leftrightarrow {x^2} - 2x + 1 + 9 = {x^2} - 8x + 16 + 4 \cr
& \Leftrightarrow x = {5 \over 3} \cr} \)

Vậy điểm D có tọa độ \(\left( {{5 \over 3};0} \right)\)

b) Gọi 2p là chu vi tam giác OAB, ta có:

\(\eqalign{
& 2p = OA + OB + OC \cr
& = \sqrt {{1^2} + {3^2}} + \sqrt {{4^2} + {2^2}} + \sqrt {{3^2} + {1^2}} \cr
& = \sqrt {10} + \sqrt {20} + \sqrt {10} \cr
& = \sqrt {10} (2 + \sqrt 2 ) \cr} \)

c) Ta có : \(O{A^2} + A{B^2} = O{B^2}\)

=> tam giác OAB vuông tại A

=> \({S_{OAB}} = {1 \over 2}OA.AB = {1 \over 2}\sqrt {10} .\sqrt {10}  = 5\)

Vậy diện tích tam giác OAB là 5 (đvdt)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.