Bài 2.8 trang 112 Sách bài tập (SBT) Đại số và giải tích 11Cho dãy số (un) thoả mãn điều kiện: Với mọi n ∈ N* thì Cho dãy số (un) thoả mãn điều kiện: Với mọi n ∈ N* thì \(0 < {u_n} < 1\) và \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\) Chứng minh dãy số đã cho là dãy giảm. Giải: Vì \(0 < {u_n} < 1\) với mọi n nên \(1 - {u_{n + 1}} > 0\). Áp dụng bất đẳng thức Cô – si ta có \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) \le {1 \over 4}\) Mặt khác, từ giả thiết \({u_{n + 1}} < 1 - {1 \over {4{u_n}}}\) suy ra \({u_{n + 1}}.{u_n} < {u_n} - {1 \over 4}\) hay \({1 \over 4} < {u_n}\left( {1 - {u_{n + 1}}} \right)\) So sánh (1) và (2) ta có: \({u_{n + 1}}\left( {1 - {u_{n + 1}}} \right) < {u_n}\left( {1 - {u_{n + 1}}} \right)\) hay \({u_{n + 1}} < {u_n}\)
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Dãy số
|
Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng?
Tính số hạng đầu u1 và công sai d của cấp số cộng (un) biết :