Bài 3 trang 196 Sách bài tập (SBT) Toán Hình học 10Cho ba điểm Cho ba điểm A(1 ; 2), B(-3 ; 1), C(4 ; -2). a) Chứng minh rằng tập hợp các điểm M(x;y) thỏa mãn \(M{A^2} + M{B^2} = M{C^2}\) là một đường tròn. b) Tìm tọa độ tâm và bán kính của đường tròn nói trên. Gợi ý làm bài a) \(M{A^2} + M{B^2} = M{C^2}\) \( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\) \(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\) \( \Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66.\) Vậy tập hợp các điểm M là một đường tròn. b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt {66} \) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
I-Đề toán tổng hợp
|
Trong mặt phẳng Oxy cho đường tròn (T) có phương trình
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là