Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.1 trang 168 Sách bài tập (SBT) Đại số và giải tích 11

Vẽ đồ thị của hàm số này.Từ đồ thị dự đoán các khoảng trên đó hàm số liên tục và chứng minh dự đoán đó.

Cho hàm số \(f\left( x \right) = {{\left( {x - 1} \right)\left| x \right|} \over x}\)

Vẽ đồ thị của hàm số này. Từ đồ thị dự đoán các khoảng trên đó hàm số liên tục và chứng minh dự đoán đó.

Giải:

a) 

\(f\left( x \right) = {{\left( {x - 1} \right)\left| x \right|} \over x} = \left\{ \matrix{
x - 1,\,{\rm{ nếu }}\,\,x > 0 \hfill \cr
1 - x,\,{\rm{ nếu\,\, x < 0}} \hfill \cr} \right.\) Hàm số này có tập xác định là \(R\backslash \left\{ 0 \right\}\)

b)

Từ đồ thị (H.7) dự đoán \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}0} \right),\;\left( {0{\rm{ }};{\rm{ }} + \infty } \right)\) nhưng không liên tục trên R. Thật vậy,

- Với \(x > 0,f\left( x \right) = x - 1\) là hàm đa thức nên liên tục trên R do đó liên tục trên \(\left( {0{\rm{ }};{\rm{ }} + \infty } \right)\)

- Với \(x < 0,f\left( x \right) = 1 - x\) cũng làhàmđa thức nên liên tục trên R do đó liên tục trên \(\left( { - \infty {\rm{ }};{\rm{ }}0} \right)\)

Dễ thấy hàm số gián đoạn tại x = 0 vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) =  - 1,{\rm{ }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Hàm số liên tục