Bài 3.1 trang 168 Sách bài tập (SBT) Đại số và giải tích 11Vẽ đồ thị của hàm số này.Từ đồ thị dự đoán các khoảng trên đó hàm số liên tục và chứng minh dự đoán đó. Cho hàm số \(f\left( x \right) = {{\left( {x - 1} \right)\left| x \right|} \over x}\) Vẽ đồ thị của hàm số này. Từ đồ thị dự đoán các khoảng trên đó hàm số liên tục và chứng minh dự đoán đó. Giải: a) \(f\left( x \right) = {{\left( {x - 1} \right)\left| x \right|} \over x} = \left\{ \matrix{ b) Từ đồ thị (H.7) dự đoán \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}0} \right),\;\left( {0{\rm{ }};{\rm{ }} + \infty } \right)\) nhưng không liên tục trên R. Thật vậy, - Với \(x > 0,f\left( x \right) = x - 1\) là hàm đa thức nên liên tục trên R do đó liên tục trên \(\left( {0{\rm{ }};{\rm{ }} + \infty } \right)\) - Với \(x < 0,f\left( x \right) = 1 - x\) cũng làhàmđa thức nên liên tục trên R do đó liên tục trên \(\left( { - \infty {\rm{ }};{\rm{ }}0} \right)\) Dễ thấy hàm số gián đoạn tại x = 0 vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - 1,{\rm{ }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\)
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 3. Hàm số liên tục
|
Cho ví dụ về một hàm số liên tục trên (a; b]
Chứng minh rằng nếu một hàm số liên tục trên (a; b] và trên [b; c) thì nó liên tục trên (a; c)