Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.12 trang 170 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh phương trình

Chứng minh phương trình 

\({x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n} = 0\) luôn có nghiệm với n là số tự nhiên lẻ.

Giải:

Hàm số \(f\left( x \right) = {x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}\) xác định trên R

- Ta có

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr
& {\rm{ = }}\mathop {\lim }\limits_{x \to + \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = + \infty \cr} \)

Vì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  + \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  + \infty \)

Do đó, \(f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì \(f\left( {{x_n}} \right) > 1\) kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho \(f\left( a \right) > 1\)              (1)

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr
& {\rm{ = }}\mathop {\lim }\limits_{x \to - \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = - \infty \cr} \) (do n lẻ).

Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty\) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  - \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  - \infty \) hay \(\lim \left[ { - f\left( {{x_n}} \right)} \right] =  + \infty \)

Do đó, \( - f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì \( - f\left( {{x_n}} \right) > 1\) kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho \( - f\left( b \right) > 1\) hay \(f\left( b \right) <  - 1\)               (2)

- Từ (1) và (2) suy ra \(f\left( a \right)f\left( b \right) < 0\)

Mặt khác, \(f\left( x \right)\) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình \(f\left( x \right) = 0\) luôn có nghiệm.

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Hàm số liên tục