Bài 3.12 trang 170 Sách bài tập (SBT) Đại số và giải tích 11Chứng minh phương trình Chứng minh phương trình \({x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n} = 0\) luôn có nghiệm với n là số tự nhiên lẻ. Giải: Hàm số \(f\left( x \right) = {x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}\) xác định trên R - Ta có \(\eqalign{ Vì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to + \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) = + \infty \) Do đó, \(f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi. Nếu số dương này là 1 thì \(f\left( {{x_n}} \right) > 1\) kể từ một số hạng nào đó trở đi. Nói cách khác, luôn tồn tại số a sao cho \(f\left( a \right) > 1\) (1) \(\eqalign{ Vì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty\) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to - \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) = - \infty \) hay \(\lim \left[ { - f\left( {{x_n}} \right)} \right] = + \infty \) Do đó, \( - f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi. Nếu số dương này là 1 thì \( - f\left( {{x_n}} \right) > 1\) kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho \( - f\left( b \right) > 1\) hay \(f\left( b \right) < - 1\) (2) - Từ (1) và (2) suy ra \(f\left( a \right)f\left( b \right) < 0\) Mặt khác, \(f\left( x \right)\) hàm đa thức liên tục trên R nên liên tục trên [a; b] Do đó, phương trình \(f\left( x \right) = 0\) luôn có nghiệm.
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Hàm số liên tục
|
Hãy giải thích câu trả lời bằng minh hoạ hình học.