Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.13 trang 170 Sách bài tập (SBT) Đại số và giải tích 11

Cho ví dụ minh hoạ.

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn [a; b]. Nếu \(f\left( a \right).f\left( b \right) > 0\) thì phương trình \(f\left( x \right) = 0\) có nghiệm hay không trong khoảng (a; b)?Cho ví dụ minh hoạ.

Giải:

Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn [a; b] và \(f\left( a \right).f\left( b \right) > 0\) thì phương trình \(f\left( x \right) = 0\) có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)

Ví dụ minh hoạ :

 - \(f\left( x \right) = {x^2} - 1\) liên tục trên đoạn \(\left[ { - 2;2} \right],f\left( { - 2} \right)f\left( 2 \right) = 9 > 0\)

Phương trình \({x^2} - 1 = 0\) có nghiệm \(x =  \pm 1\) trong khoảng (-2; 2)

- \(f\left( x \right) = {x^2} + 1\) liên tục trên đoạn [-1; 1] và \(f\left( { - 1} \right)f\left( 1 \right) = 4 > 0\). Còn phương trình \({x^2} + 1 = 0\) lại vô nghiệm trong khoảng (-1; 1)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Hàm số liên tục