Bài 3.20 trang 147 Sách bài tập (SBT) Hình học 11Hai tam giác cân ABC và DBC nằm trong hai mặt phẳng khác nhau có chung cạnh đáy BC tạo nên tứ diện ABCD. Gọi I là trung điểm của cạnh BC. Hai tam giác cân ABC và DBC nằm trong hai mặt phẳng khác nhau có chung cạnh đáy BC tạo nên tứ diện ABCD. Gọi I là trung điểm của cạnh BC. a) Chứng minh \(BC \bot A{\rm{D}}\) b) Gọi AH là đường cao của tam giác ADI Chứng minh rằng AH vuông góc với mặt phẳng (BCD). Giải:
a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên \(AI \bot BC\). Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên \(DI \bot BC\). Ta suy ra: \(BC \bot \left( {AI{\rm{D}}} \right)\) nên \(BC \bot A{\rm{D}}\). b) Vì \(BC \bot \left( {AI{\rm{D}}} \right)\) nên \(BC \bot AH\) Mặt khác \(AH \bot I{\rm{D}}\) nên ta suy ra AH vuông góc với mặt phẳng (BCD). Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3. Đường thẳng vuông góc với mặt phẳng
|
Chứng minh rằng tập hợp những điểm cách đều ba đỉnh của tam giác ABC là đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn (C) ngoại tiếp tam giác ABC đó.
Khi mặt phẳng (AA’C’C) vuông góc với mặt phẳng (BB’D’D)?
Cho tứ diện ABCD có ba cặp cạnh đối diện bằng nhau là AB = CD, AC = BD và AD = BC. Gọi M và N lần lượt là trung điểm của AB và CD.