Bài 3.29 trang 114 sách bài tập (SBT) – Hình học 12Viết phương trình của mặt phẳng đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng : 2x – y + 3z + 4 = 0 Viết phương trình của mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + 3z + 4 = 0 Hướng dẫn làm bài: Mặt phẳng \((\beta )\) song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\): 2x – y + 3z + 4 = 0 , do đó hai vecto có giá song song hoặc nằm trên \((\beta )\) là: \(\overrightarrow j = (0;1;0)\) và \(\overrightarrow {{n_\alpha }} = (2; - 1;3)\) Suy ra \((\beta )\) có vecto pháp tuyến là \(\overrightarrow {{n_\beta }} = \overrightarrow j \wedge \overrightarrow {{n_\alpha }} = (3;0; - 2)\) Mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: \(\overrightarrow {{n_\beta }} = (3;0; - 2)\) Vậy phương trình của \((\beta )\) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0 Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Phương trình mặt phẳng
|
Lập phương trình của mặt phẳng đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau:
Viết phương trình của đường thẳng nằm trong mặt phẳng
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau: