Loading [Contrib]/a11y/accessibility-menu.js
🔥 2K8! KHAI GIẢNG SUN 2026 LUYỆN THI TN THPT - ĐGNL & ĐGTD

🎁 ƯU ĐÃI -50% + TẶNG SÁCH SUNBOOK & 17 ĐỀ 9+

  • Chỉ còn
  • 14

    Giờ

  • 20

    Phút

  • 1

    Giây

Xem chi tiết

Bài 3.3 trang 171 sách bài tập (SBT) - Giải tích 12

Tìm nguyên hàm của các hàm số sau:

Tìm nguyên hàm của các hàm số sau:

a) \(f(x) = {(x - 9)^4}\)                             

 b) \(f(x) = {1 \over {{{(2 - x)}^2}}}\)

c) \(f(x) = {x \over {\sqrt {1 - {x^2}} }}\)                               

d) \(f(x) = {1 \over {\sqrt {2x + 1} }}\)

e) \(f(x) = {{1 - \cos 2x} \over {{{\cos }^2}x}}\)                                                 

g) \(f(x) = {{2x + 1} \over {{x^2} + x + 1}}\)

Hướng dẫn làm bài

a) \(F(x) = {{{{(x - 9)}^5}} \over 5} + C\)                                             

 b) \(F(x) = {1 \over {2 - x}} + C\)

c) \(F(x) =  - \sqrt {1 - {x^2}}  + C\)                                             

d) \(F(x) = \sqrt {2x + 1}  + C\)

e) \(F(x) = 2(\tan x - x) + C\)  .

HD: Vì \(f(x) = 2{{{{\sin }^2}x} \over {{{\cos }^2}x}} = 2({1 \over {{{\cos }^2}x}} - 1)\)

g) \(F(x) = \ln ({x^2} + x + 1) + C\). HD:  Đặt u = x2 + x + 1 , ta có u’ = 2x + 1  

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 1. Nguyên hàm