Bài 3.38 trang 130 sách bài tập (SBT) – Hình học 12Tính khoảng cách giữa các cặp đường thẳng d và d' trong các trường hợp sau: Tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong các trường hợp sau: a)\(\Delta :\left\{ {\matrix{{x = 1 + t} \cr {y = - 1 - t} \cr {z = 1} \cr} } \right.\) và \(\Delta ':\left\{ {\matrix{{x = 2 - 3t'} \cr {y = 2 + 3t'} \cr {z = 3t'} \cr} } \right.\) b)\(\Delta :\left\{ {\matrix{{x = t} \cr {y = 4 - t} \cr {z = - 1 + 2t} \cr} } \right.\) và \(\Delta ':\left\{ {\matrix{{x = t'} \cr {y = 2 - 3t'} \cr {z = - 3t'} \cr} } \right.\) Hướng dẫn làm bài: a) Gọi \((\alpha )\) là mặt phẳng chứa \(\Delta \) và song song với \(\Delta '\). Hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow a = (1; - 1;0)\) và \(\overrightarrow a ' = ( - 1;1;1)\). Suy ra \(\overrightarrow {{n_\alpha }} = ( - 1; - 1;0)\) \((\alpha )\) đi qua điểm M1(1; -1; 1) thuộc \(\Delta \) và có vecto pháp tuyến: \(\overrightarrow {{n_{\alpha '}}} = (1;1;0)\) Vậy phưong trình của mặt phẳng \((\alpha )\) có dạng x – 1 + y + 1= hay x + y = 0 Ta có: M2((2; 2; 0) thuộc đường thẳng \(\Delta '\) \(d(\Delta ,\Delta ') = d({M_2},(\alpha )) = {{|2 + 2|} \over {\sqrt {1 + 1} }} = 2\sqrt 2 \) b) Hai đường thẳng \(\Delta \) và \(\Delta '\) có phương trình là: \(\Delta :\left\{ {\matrix{{x = t} \cr {y = 4 - t} \cr {z = - 1 + 2t} \cr} } \right.\) và \(\Delta ':\left\{ {\matrix{{x = t'} \cr {y = 2 - 3t'} \cr {z = - 3t'} \cr} } \right.\) Phương trình mặt phẳng \((\alpha )\) chứa \(\Delta \) và song song với \(\Delta '\) là 9x + 5y – 2z – 22 = 0 Lấy điểm M’(0; 2; 0) trên \(\Delta '\) . Ta có \(d(\Delta ,\Delta ') = d(M',(\alpha )) = {{|5.(2) - 22|} \over {\sqrt {81 + 25 + 4} }} = {{12} \over {\sqrt {110} }}\) Vậy khoảng cách giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \({{12} \over {\sqrt {110} }}\). Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Phương trình đường thẳng - SBT Toán 12
|
Cho điểm M(1; -1; 2) và mặt phẳng : 2x – y + 2z + 12 = 0
Lập phương trình đường vuông góc chung của d và d’.