Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.42 trang 131 sách bài tập (SBT) – Hình học 12

Lập phương trình đường vuông góc chung của d và d’.

Cho hai đường thẳng :  \(d:{{x - 1} \over { - 1}} = {{y - 2} \over 2} = {z \over 3}\)  và \(d':\left\{ {\matrix{{x = 1 + t'} \cr {y = 3 - 2t'} \cr {z = 1} \cr} } \right.\)

Lập phương trình đường vuông góc chung của d và d’.

Hướng dẫn làm bài:

Phương trình tham số của đường thẳng d:\(\left\{ {\matrix{{x = 1 - t} \cr {y = 2 + 2t} \cr {z = 3t} \cr} } \right.\)

Vecto chỉ phương của hai đường thẳng d và d’lần lượt là \(\overrightarrow a  = ( - 1;2;3),\overrightarrow {a'}  = (1; - 2;0)\).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’ ; 1) trên d’ ta có \(\overrightarrow {MM'}  = (t' + t;1 - 2t' - 2t;1 - 3t)\) .

MM’ là đường vuông góc chung của d và d’.

\(\Leftrightarrow \left\{ {\matrix{{\overrightarrow {MM'} .\overrightarrow a = 0} \cr {\overrightarrow {MM'} .\overrightarrow {a'} = 0} \cr} } \right.\)

\(\Leftrightarrow \left\{ {\matrix{{ - t' - t + 2 - 4t' - 4t + 3 - 9t = 0} \cr {t' + t - 2 + 4t' + 4t = 0} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{{5t' + 14t = 5} \cr {5t' + 5t = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{t = {1 \over 3}} \cr {t' = {1 \over {15}}} \cr} } \right.\)

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là \(M({2 \over 3};{8 \over 3};1),M'({{16} \over {15}};{{43} \over {15}};1)\)

Do đó \(\overrightarrow {MM'}  = ({6 \over {15}};{3 \over {15}};0)\)

Suy ra đường vuông góc chung \(\Delta \) của d và d’ có vecto chỉ phương \(\overrightarrow u  = (2;1;0)\)

Vậy phương trình tham số của \(\Delta \) là: \(\left\{ {\matrix{{x = {2 \over 3} + 2t} \cr {y = {8 \over 3} + t} \cr {z = 1} \cr} } \right.\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.