Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.4 trang 143 Sách bài tập (SBT) Toán Hình học 10

Lập phương trình ba đường trung trực của một tam giác có trung điểm các cạnh lần lượt là

Lập phương trình ba đường trung trực của một tam giác có trung điểm các cạnh lần lượt là M(-1;0), N(4;1), P(2;4).

Gợi ý làm bài

Gọi \({\Delta _1},{\Delta _2},{\Delta _3}\) lần lượt là các đường trung trực đi qua M, N, P.

Ta có: \({\overrightarrow n _{{\Delta _1}}} = \overrightarrow {NP}  = ( - 2;3)\)

Vậy \({\Delta _1}\) có phương trình \( - 2(x + 1) + 3y = 0 \Leftrightarrow 2x - 3y + 2 = 0.\)

Ta có: \({\overrightarrow n _{{\Delta _2}}} = \overrightarrow {MP}  = (3;4)\)

Vậy \({\Delta _2}\) có phương trình \(3(x - 4) + 4(y - 1) = 0 \Leftrightarrow 3x + 4y - 16 = 0.\)

Ta có: \({\overrightarrow n _{{\Delta _3}}} = \overrightarrow {MN}  = (5;1)\)

Vậy \({\Delta _3}\) có phương trình \(5(x - 2) + (y - 4) = 0 \Leftrightarrow 5x + y - 14 = 0.\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.