Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.44 trang 161 Sách bài tập (SBT) Toán Hình học 10

Cho elip (E)

Cho elip (E) : \({{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\) và đường thẳng  \(\Delta \) thay đổi có phương trình tổng quát Ax + By + C = 0 luôn thỏa mãn \(25{A^2} + 9{B^2} = {C^2}\). Tính tích khoảng cách từ hai tiêu điểm  \({F_1}\), \({F_2}\) của (E) đến đường thẳng \(\Delta \)

Gợi ý làm bài

\((E):{{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\)

Ta có:

\({a^2} = 25,{b^2} = 9 \Rightarrow {c^2} = {a^2} - {b^2} = 16\)

\( \Rightarrow c = 4.\)

Vậy (E) có hai tiêu điểm là \({F_1}\left( { - 4;0} \right)\) và \({F_2}\left( {4;0} \right)\). Ta có : 

\({d_1} = d({F_1},\Delta ) = {{\left| { - 4A + C} \right|} \over {\sqrt {{A^2} + {B^2}} }}\)

\({d_2} = d({F_2},\Delta ) = {{\left| {4A + C} \right|} \over {\sqrt {{A^2} + {B^2}} }}\)

Suy ra: 

\({d_1}{d_2} = {{\left| {{C^2} - 16{A^2}} \right|} \over {{A^2} + {B^2}}}.\,\,\,(1)\)

Thay \({C^2} = 25{A^2} + 9{B^2}\) vào (1) ta được : 

\(\eqalign{
& {d_1}{d_2} = {{\left| {25{A^2} + 9{B^2} - 16{A^2}} \right|} \over {{A^2} + {B^2}}} \cr
& = {{9({A^2} + {B^2})} \over {{A^2} + {B^2}}} \cr} \)

Vậy \({d_1}{d_2} = 9.\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.