Bài 3.5 trang 69 Sách bài tập (SBT) Đại số và giải tích 11Tìm a và b. Trong khai triển của \({\left( {x + a} \right)^3}{\left( {x - b} \right)^6}\), hệ số của x7 là -9 và không có số hạng chứa x8. Tìm a và b. Giải: Số hạng chứa x7 là \(\left( {C_3^0.C_6^2{{\left( { - b} \right)}^2} + C_3^1a.C_6^1\left( { - b} \right) + C_3^2{a^2}C_6^0} \right){x^7}\) Số hạng chứa x8 là \(\left( {C_3^0.C_6^1\left( { - b} \right) + C_3^1a.C_6^0} \right){x^8}\) Theo bài ra ta có \(\eqalign{
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 3. Nhị thức Niu-tơn
|
Biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 97.
Gieo mộtđồng tiền ba lần và quan sát sự xuất hiện mặt sấp (S), mặt ngửa (N).
Gieo một đồng tiền, sau đó gieo một con súc sắc. Quan sát sự xuất hiện mặt sấp (S), mặt ngửa (N) của đồng tiền và số chấm xuất hiện trên con súc sắc.
Một con súc sắc được gieo ba lần. Quan sát số chấm xuất hiện