Bài 3.63 trang 133 sách bài tập (SBT) – Hình học 12Trong không gian Oxyz, cho ba điểm A, B, C Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C({1 \over 3};{1 \over 3};{1 \over 3})\) a) Viết phương trình tổng quát của mặt phẳng \((\alpha )\) đi qua O và vuông góc với OC. b) Viết phương trình mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\). Hướng dẫn làm bài: a) Mặt phẳng \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {OC} = ({1 \over 3};{1 \over 3};{1 \over 3})\) hay \(\overrightarrow n = 3\overrightarrow {OC} = (1;1;1)\) Phương trình mặt phẳng \((\alpha )\) là x + y + z = 0. b) Gọi \((\beta )\) là mặt phẳng chứa AB và vuông góc với mặt phẳng \((\alpha )\) . Hai vecto có giá song song hoặc nằm trên là: \(\overrightarrow {AB} = (0;1;1)\) và \(\overrightarrow {{n_\alpha }} = (1;1;1)\) Suy ra \((\beta )\) có vecto pháp tuyến \(\overrightarrow {{n_\beta }} = (0;1; - 1)\) Phương trình mặt phẳng \((\beta )\) là y – z = 0 Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
ĐỀ TOÁN TỔNG HỢP - CHƯƠNG III
|
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0; 0; 0), B(a; 0; 0), D(0; a; 0), A’(0; 0; b) với a > 0 và b> 0. Gọi M là trung điểm cạnh CC’.
Cho hình chóp S.ABCD có đáy lầ hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0), . Gọi M là trung điểm cạnh SC.
Cho mặt phẳng (P): 2x – 3y + 4z – 5 = 0 và mặt cầu (S):x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0