Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.65 trang 164 Sách bài tập (SBT) Toán Hình Học 10

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C)

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C)  : \({(x - 1)^2} + {(y - 2)^2} = 4\) và đường thẳng  d: x - y - 1 = 0. Viết phương trình đường tròn (C ’) đối xứng vơi đường tròng (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C ’) và (C).

Gợi ý làm bài

(Xem hình 3.23)

Đường thẳng d có vectơ pháp tuyến là \(\overrightarrow n  = \left( {1; - 1} \right).\) Do đó đường thẳng \(\Delta \) đi qua tâm \(I\left( {1;2} \right)\) và vuông góc với d có phương trình :

\({{x - 1} \over 1} = {{y - 2} \over { - 1}} \Leftrightarrow x + y - 3 = 0.\)

Tọa độ giao điểm H của d và  là nghiệm của hệ phương trình :

\(\left\{ \matrix{
x - y - 1 = 0 \hfill \cr
x + y - 3 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2 \hfill \cr
y = 1 \hfill \cr} \right. \Rightarrow H\left( {2;1} \right)\)

Gọi J là điểm đối xứng của I qua d. Khi đó : 

\(\left\{ \matrix{
{x_J} = 2{x_H} - {x_I} = 3 \hfill \cr
{y_J} = 2{y_H} - {y_I} = 0 \hfill \cr} \right. \Rightarrow J(3;0).\)

(C ’) đối xứng với (C ) qua d nên (C ’) có tâm là \(J\left( {3;0} \right)\) và bán kính R = 2. 

Do đó (C ’) có phương trình là : 

\({\left( {x - 3} \right)^2} + {y^2} = 4\)

Tọa độ các giao điểm của (C )(C ’) là nghiệm của hệ phương trình :

\(\left\{ \matrix{
{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4 \hfill \cr
{\left( {x - 3} \right)^2} + {y^2} = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x - y - 1 = 0 \hfill \cr
{\left( {x - 3} \right)^2} + {y^2} = 4 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
y = x - 1 \hfill \cr
2{x^2} - 8x + 6 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1,y = 0 \hfill \cr
x = 3,y = 2. \hfill \cr} \right.\)

Vậy tọa độ giao điểm của (C )(C ) là A(1 ; 0) và B(3 ; 2).

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.