Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.67 trang 164 Sách bài tập (SBT) Toán Hình Học 10

Trong mặt phẳng tọa độ Oxy, xét tam giác ABC vuông tại A

Trong mặt phẳng tọa độ Oxy,xét tam giác ABC vuông tại A, phương trình đường thẳng BC là :  \(\sqrt 3 x - y - \sqrt 3  = 0\), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC.

Gợi ý làm bài

( Xem hình 3.25)

Ta có: \(BC \cap Ox = B(1;0)\)

Đặt \({x_A} = a\) ta có A(a;0) và \({x_C} = a \Rightarrow {y_C} = \sqrt 3 a - \sqrt 3 .\)

Vậy \(C\left( {a;\sqrt 3 a - \sqrt 3 } \right).\)

Từ công thức

\(\left\{ \matrix{
{x_G} = {1 \over 3}\left( {{x_A} + {x_B} + {x_C}} \right) \hfill \cr
{y_G} = {1 \over 3}\left( {{y_A} + {y_B} + {y_C}} \right) \hfill \cr} \right.\)

Ta có:

\(G\left( {{{2a + 1} \over 3};{{\sqrt 3 \left( {a - 1} \right)} \over 3}} \right).\)

Mà \(AB = \left| {a - 1} \right|,AC = \sqrt 3 \left| {a - 1} \right|,BC = 2\left| {a - 1} \right|\). Do đó : 

\({S_{\Delta ABC}} = {1 \over 2}AB.AC = {{\sqrt 3 } \over 2}{\left( {a - 1} \right)^2}.\)

Ta có:

\(\eqalign{
& r = {{2S} \over {AB + AC + BC}} \cr
& = {{\sqrt 3 {{\left( {a - 1} \right)}^2}} \over {3\left| {a - 1} \right| + \sqrt 3 \left| {a - 1} \right|}} = {{\left| {a - 1} \right|} \over {\sqrt 3 + 1}} = 2. \cr} \)

Vậy \(\left| {a - 1} \right| = 2\sqrt 3  + 2.\)

Trường hợp 1

\({a_1} = 2\sqrt 3  + 3 \Rightarrow {G_1}\left( {{{7 + 4\sqrt 3 } \over 3};{{6 + 2\sqrt 3 } \over 3}} \right).\)

Trường hợp 2

\({a_2} =  - 2\sqrt 3  - 1 \Rightarrow {G_2}\left( {{{4\sqrt 3  - 1} \over 3};{{ - 6 - 2\sqrt 3 } \over 3}} \right).\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.