Bài 37, 38, 39, 40 trang 56, 57 SGK Toán 9 tập 2 - Luyện tậpGiải bài 37, 38 trang 56; bài 39, 40 trang 57 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Luyện tập Phương trình quy về phương trình bậc hai. Bài 39 Giải phương trình bằng cách đưa về phương trình tích Bài 37 trang 56 SGK Toán lớp 9 tập 2 Câu hỏi: Giải phương trình trùng phương: a) \(9{x^4} - 10{x^2} + 1 = 0\) b) \(5{x^4} + 2{x^2}{\rm{ - }}16 = 10{\rm{ - }}{x^2}\) c) \(0,3{x^4} + 1,8{x^2} + 1,5 = 0\) d) \(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\) Lời giải: a) \(9{x^4} - 10{x^2} + 1 = 0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(9{t^2}-{\rm{ }}10t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\). Vì \(a + b + c = 9 – 10 + 1 = 0\) nên \(\displaystyle {t_1} = 1,{t_2} = {1 \over 9}\) (thỏa mãn) + Với t = 1\(⇒ x^2 = 1 ⇒ x = 1\) hoặc \(x = -1.\) + Với \(t = \dfrac{1}{9} \Rightarrow {x^2} = \dfrac{1}{9} \Leftrightarrow x = \pm \dfrac{1}{3}\) Vậy các nghiệm của phương trình đã cho là: \(\displaystyle {x_1} = - 1,{x_2} = 1,{x_3} = - {1 \over 3},{x_4} = {\rm{ }}{1 \over 3}\) b) \(5{x^4} + 2{x^2}{\rm{ - }}16 = 10{\rm{ - }}{x^2}\) \( \Leftrightarrow {\rm{ }}5{x^4} + {\rm{ }}3{x^2}-{\rm{ }}26{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(5{t^2} + {\rm{ }}3t{\rm{ }} - 26{\rm{ }} = {\rm{ }}0\) \(\Delta {\rm{ }} = {\rm{ }}9{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}26{\rm{ }} = {\rm{ }}529{\rm{ }} = {\rm{ }}{23^2}\); \({\rm{ }}{t_1} = {\rm{ }}2,{\rm{ }}{t_2} = {\rm{ }} - 2,6\) (loại). Do đó: \(x^2=2\) suy ra \({x_1} = {\rm{ }}\sqrt 2 ,{\rm{ }}{x_2} = {\rm{ }} - \sqrt 2 \) c) \(0,3{x^4} + 1,8{x^2} + 1,5 = 0\) \( \Leftrightarrow {\rm{ }}{x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\) Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \({t^2} + {\rm{ }}6t{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\) Phương trình này có \(a-b+c=1-6+5=0\) nên có hai nghiệm: \({\rm{ }}{t_1} = {\rm{ }} - 1\) (loại), \({\rm{ }}{t_2} = {\rm{ }} - 5\) (loại). Vậy phương trình đã cho vô nghiệm. Chú ý: Cũng có thể nhận xét rằng vế trái \({x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} \ge {\rm{ }}5\), còn vế phải bằng 0. Vậy phương trình vô nghiệm. d) \(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\) \( \displaystyle \Leftrightarrow 2{x^2} + 5 - {\rm{ }}{1 \over {{x^2}}} = 0\). Điều kiện \(x ≠ 0\) \(2{x^4} + {\rm{ }}5{x^2}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(2{t^2} + 5t{\rm{ - }}1 = 0;\Delta = 25 + 8 = 33\), \(\displaystyle {t_1} = {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}(tm),{t_2} = {\rm{ }}{{ - 5 - \sqrt {33} } \over 4}\) (loại) Do đó \(\displaystyle x^2= {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}\) suy ra \(\displaystyle {x_1} = {\rm{ }}{{\sqrt { - 5 + \sqrt {33} } } \over 2},{x_2} = {\rm{ }} - {{\sqrt { - 5 + \sqrt {33} } } \over 2}\) Bài 38 trang 56 SGK Toán lớp 9 tập 2 Câu hỏi: Giải các phương trình: a) \({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\) b) \({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\) c) \({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\) d) \(\dfrac{x(x - 7)}{3} – 1\) = \(\dfrac{x}{2}\) - \(\dfrac{x-4}{3}\) e) \(\dfrac{14}{x^{2}-9}\) = \(1 - \dfrac{1}{3-x}\) f) \(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\) Lời giải: a) \({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\) \( \Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}9{\rm{ }} + {\rm{ }}{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\) \( \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}5x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\) \(\Delta = 25{\rm{ - }}16 = 9>0\) Khi đó phương trình có 2 nghiệm phân biệt là: \({x_1} = \dfrac{{ - 5 - 3}}{{2.2}} = - 2;{x_2} = \dfrac{{ - 5 + 3}}{{2.2}} = - \dfrac{1}{2}\) Vậy phương trình đã cho có 2 nghiệm phân biệt. b) \({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\) \(\Leftrightarrow {\rm{ }}{x^3} + {\rm{ }}2{x^2}-{\rm{ }}{x^2} + {\rm{ }}6x{\rm{ }}-{\rm{ }}9{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}2\) \({\rm{ }} \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\) \(\displaystyle \Delta' = 16 + 22 = 38,{x_1} = {\rm{ }}{{ - 4 + \sqrt {38} } \over 2},{x_2} = {{ - 4 - \sqrt {38} } \over 2}\) Vậy phương trình đã cho có 2 nghiệm phân biệt. c) \({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\) \( \Leftrightarrow {\rm{ }}{x^3}-{\rm{ }}3{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}0,5{x^2} = {\rm{ }}{x^3} + {\rm{ }}1,5x\) \(\Leftrightarrow {\rm{ }}2,5{x^2}-{\rm{ }}1,5x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {\rm{ }}5{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\); \({\rm{ }}\Delta {\rm{ }} = {\rm{ }}9{\rm{ }}-{\rm{ }}40{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\) Phương trình vô nghiệm d) \(\dfrac{x(x - 7)}{3}– 1=\dfrac{x}{2}-\dfrac{x-4}{3}\) \( \Leftrightarrow {\rm{ }}2x\left( {x{\rm{ }}-{\rm{ }}7} \right){\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}4} \right)\) \(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}14x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}8\) \(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}15x{\rm{ }}-{\rm{ }}14{\rm{ }} = {\rm{ }}0;\) \(\Delta {\rm{ }} = {\rm{ }}225{\rm{ }} + {\rm{ }}112{\rm{ }} = {\rm{ }}337>0\) \(\displaystyle {x_1} = {{15 + \sqrt {337} } \over 4},{x_2} = {\rm{ }}{{15 - \sqrt {337} } \over 4}\) Vậy phương trình đã cho có 2 nghiệm phân biệt. e) \(\dfrac{14}{x^{2}-9}=1-\dfrac{1}{3-x}\). Điều kiện: \(x{\rm{ }} \ne {\rm{ }} \pm 3\) Khi đó \(\begin{array}{l}\dfrac{{14}}{{{x^2} - 9}} = 1 - \dfrac{1}{{3 - x}}\\ \Leftrightarrow \dfrac{{14}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \dfrac{{{x^2} - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\) \(\begin{array}{l} \Rightarrow 14 = {x^2} - 9 + x + 3\\ \Leftrightarrow {x^2} + x - 20 = 0\end{array}\) \({\rm{ }}\Delta {\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}20{\rm{ }} = {\rm{ }}81>0\) Nên \(\displaystyle {x_1} = {{ - 1 - 9} \over 2} = - 5;{x_2} = {{ - 1 + 9} \over 2} = 4\) (thỏa mãn) Vậy phương trình có hai nghiệm \({x_1} = {\rm{ }} - 5,{\rm{ }}{x_2} = {\rm{ }}4\). f) \(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\). Điều kiện: \(x ≠ -1, x ≠ 4\) Qui đồng và khử mẫu ta được: \(2x\left( {x{\rm{ }}-{\rm{ }}4} \right){\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}8\) \( \Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}8x{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\) \(\Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}7x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\) Có \(a – b + c = 1 – (-7) – 8 = 0\) nên \({x_1} = - 1,{x_2} = 8\) Vì \({x_1} = - 1\) không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là \(x = 8\). Bài 39 trang 57 SGK Toán lớp 9 tập 2 Câu hỏi: Giải phương trình bằng cách đưa về phương trình tích. a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\) b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\) c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\) d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\) Lời giải: a) \(\left( {3{x^2} - 7x - 10} \right)\left[ {2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5 - 3} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}3{x^2} - 7x - 10 = 0\,\left( 1 \right)\\2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5 - 3 = 0\left( 2 \right)\end{array} \right.\) + Giải phương trình (1). Ta có \(a - b + c = 3 - \left( { - 7} \right) + \left( { - 10} \right) = 0\) nên phương trình (1) có hai nghiệm phân biệt \(x = - 1;x = \dfrac{10}{3}\) + Giải phương trình (2) Ta thấy \(a + b + c = 2 + 1 - \sqrt 5 + \sqrt 5 - 3 = 0\) nên phương trình (2) có hai nghiệm phân biệt \(x = 1;x = \dfrac{{\sqrt 5 - 3}}{2}\) Vậy phương trình đã cho có bốn nghiệm \(x = - 1;x = \dfrac{10}{3};x = 1;x = \dfrac{{\sqrt 5 - 3}}{2}.\) b) \(\begin{array}{l}{x^3} + 3{x^2} - 2x - 6 = 0\\ \Leftrightarrow {x^2}\left( {x + 3} \right) - 2\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 2} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2 = 0\\x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\x = - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = - \sqrt 2 \\x = - 3\end{array} \right.\end{array}\) Vậy phương trình đã cho có ba nghiệm \(x = \sqrt 2 ;x = - \sqrt 2 ;x = - 3\) c) \(\begin{array}{l}\left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = 0,6{x^2} + x\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = x\left( {0,6x + 1} \right)\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) - x\left( {0,6x + 1} \right) = 0\\ \Leftrightarrow \left( {0,6x + 1} \right)\left( {{x^2} - x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}0,6x + 1 = 0\\{x^2} - x - 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 5}}{3}\\{x^2} - x - 1 = 0\left( * \right)\end{array} \right.\end{array}\) Phương trình (*) có \(\Delta = {\left( { - 1} \right)^2} - 4.1\left( { - 1} \right) = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{1 + \sqrt 5 }}{2}\\x = \dfrac{{1 - \sqrt 5 }}{2}\end{array} \right.\) Vậy phương trình đã cho có ba nghiệm phân biệt \(x = - \dfrac{5}{3};x = \dfrac{{1 + \sqrt 5 }}{2};x = \dfrac{{1 - \sqrt 5 }}{2}\) d) \(\begin{array}{l}{\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\\ \Leftrightarrow {\left( {{x^2} + 2x - 5} \right)^2} - {\left( {{x^2} - x + 5} \right)^2} = 0\\ \Leftrightarrow \left( {{x^2} + 2x - 5 + {x^2} - x + 5} \right)\left( {{x^2} + 2x - 5 - {x^2} + x - 5} \right) = 0\\ \Leftrightarrow \left( {2{x^2} + x} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow x\left( {2x + 1} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\2x + 1 = 0\\3x - 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - \dfrac{1}{2}\\x = \dfrac{{10}}{3}\end{array} \right.\end{array}\) Vậy phương trình có ba nghiệm \(x = 0;x = - \dfrac{1}{2};x = \dfrac{{10}}{3}\) Bài 40 trang 57 SGK Toán lớp 9 tập 2 Câu hỏi: Giải phương trình bằng cách đặt ẩn phụ a) \(3{({x^2} + {\rm{ }}x)^2}-{\rm{ }}2({x^2} + {\rm{ }}x){\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) b) \({({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) c) \(x - \sqrt{x} = 5\sqrt{x} + 7\) d) \(\dfrac{x}{x+ 1} – 10 . \dfrac{x+1}{x}= 3\) Lời giải: a) Đặt \({x^2} + x = t\) ta được phương trình \(3{t^2} - 2t - 1 = 0\) Phương trình này có \(a + b + c = 3 + \left( { - 2} \right) + \left( { - 1} \right) = 0\) nên có hai nghiệm \(t = 1;t = - \dfrac{1}{3}\) + Với \({t_1} = 1\) ta có \({x^2} + x = 1\) hay \({x^2} + x - 1 = 0\) có \(\Delta = {1^2} + 4.1.1 = 5 > 0\) nên phương trình có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\) + Với \(t = - \dfrac{1}{3} \Rightarrow {x^2} + x = - \dfrac{1}{3}\)\( \Leftrightarrow 3{x^2} + 3x + 1 = 0\) có \(\Delta = {3^2} - 4.3.1 = - 3 < 0\) nên phương trình vô nghiệm. Vậy phương trình đã cho có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}.\) b) Ta có \(\begin{array}{l}{\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\\ \Leftrightarrow {\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x + 2 - 6 = 0\end{array}\) Đặt \(t = {x^2} - 4x + 2\) ta được phương trình \({t^2} + t - 6 = 0\) có \(\Delta = {1^2} - 4.1.\left( { - 6} \right) = 25 > 0 \)\(\Rightarrow \sqrt \Delta = 5\) nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 1 + 5}}{2} = 2\\t = \dfrac{{ - 1 - 5}}{2} = - 3\end{array} \right.\) + Với \(t = 2 \Rightarrow {x^2} - 4x + 2 = 2 \)\(\Leftrightarrow {x^2} - 4x = 0 \)\(\Leftrightarrow x\left( {x - 4} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 4 = 0\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\) + Với \(t = - 3 \Leftrightarrow {x^2} - 4x + 2 = - 3\)\( \Leftrightarrow {x^2} - 4x + 5 = 0\) có \(\Delta = {\left( { - 4} \right)^2} - 4.1.5 = - 4 < 0\) nên phương trình này vô nghiệm. Vậy phương trình đã cho có nghiệm \(x = 0;x = 4.\) c) \(x - \sqrt x = 5\sqrt x + 7 \)\(\Leftrightarrow x - 6\sqrt x - 7 = 0\) ĐK: \(x \ge 0\) Đặt \(\sqrt x = t\,\left( {t \ge 0} \right)\) ta được phương trình \({t^2} - 6t - 7 = 0\) có \(a - b + c = 1 - \left( { - 6} \right) + \left( { - 7} \right) = 0\) nên có hai nghiệm \(\left[ \begin{array}{l}t = - 1\left( L \right)\\t = 7\left( N \right)\end{array} \right.\) Với \(t = 7 \Rightarrow \sqrt x = 7 \Leftrightarrow x = 49\,\left( {TM} \right)\) Vậy phương trình có nghiệm \(x = 49.\) d) ĐK:\(x \ne \left\{ { - 1;0} \right\}\) Đặt \(\dfrac{x}{{x + 1}} = t \Rightarrow \dfrac{{x + 1}}{x} = \dfrac{1}{t}\) , ta có phương trình \(t - 10.\dfrac{1}{t} = 3 \Rightarrow {t^2} - 3t - 10 = 0\) Phương trình trên có \(\Delta = {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right) = 49 > 0 \Rightarrow \sqrt \Delta = 7\) nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{3 + 7}}{2} = 5\\t = \dfrac{{3 - 7}}{2} = - 2\end{array} \right.\) + Với \(t = 5 \Rightarrow \dfrac{x}{{x + 1}} = 5 \\\Rightarrow 5x + 5 = x \Leftrightarrow x = - \dfrac{5}{4}\left( {TM} \right)\) + Với \(t = - 2 \Rightarrow \dfrac{x}{{x + 1}} = - 2\\ \Rightarrow x = - 2x - 2 \Leftrightarrow x = - \dfrac{2}{3}\left( {TM} \right)\) Vậy phương trình có hai nghiệm \(x = - \dfrac{5}{4};x = - \dfrac{2}{3}.\) Sachbaitap.com
Xem thêm tại đây:
Bài 7. Phương trình quy về phương trình bậc hai
|
Giải bài 41, 42, 43, 44 trang 58 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Giải bài toán bằng cách lập phương trình. Bài 41 Trong lúc học nhóm, bạn Hùng yêu cầu bạn Minh và bạn Lan mỗi người chọn một số sao cho hai số này hơn kém nhau là 5 và tích của chúng phải bằng 150.
Giải bài 45, 46, 47, 48, 49, 50, 51 trang 59; bài 52, 53 trang 60 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Luyện tập Giải bài toán bằng cách lập phương trình. Bài 45 Tích của hai số tự nhiên liên tiếp lớn hơn tổng của chúng là 109. Tìm hai số đó.