Bài 7 trang 106 Sách bài tập (SBT) Toán Đại số 10Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng: \({a^2}b + {1 \over b} \ge 2a\) Gợi ý làm bài \({a^2}b + {1 \over b} \ge 2\sqrt {{a^2}b.{1 \over b}} = 2a\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 1: Bất đẳng thức
|
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng
Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng