Bài 44 trang 125 Sách bài tập Hình học lớp 12 Nâng caoXác định các giá trị k và m Xác định các giá trị k và m để ba mặt phẳng sau đây cùng đi qua một đường thẳng : \(5x+ky+4z+m=0\) \(3x-7y+z-3=0\) \(x-9y-2z+5=0.\) Giải Để ba mặt phẳng đã cho cùng đi qua một đường thẳng, điều kiện cần và đủ là mặt phẳng \(5x + ky + 4z + m = 0\) phải chứa hai điểm phân biệt của đường thẳng \(\Delta \) với \(\Delta \) là giao tuyến của hai mặt phẳng còn lại. Ta tìm hai điểm nào đó của \(\Delta \). Cho y = 0, ta có \(\left\{ \matrix{ 3x + z = 3 \hfill \cr x - 2z = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {1 \over 7} \hfill \cr z = {{18} \over 7} \hfill \cr} \right.\) \(\Rightarrow {M_1}\left( {{1 \over 7};0;{{18} \over 7}} \right) \in \Delta \) Cho z = 0, ta có \(\left\{ \matrix{ 3x - 7y = 3 \hfill \cr x - 9y = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {{31} \over {10}} \hfill \cr y = {9 \over {10}} \hfill \cr} \right.\) \(\Rightarrow {M_2}\left( {{{31} \over {10}};{9 \over {10}};0} \right) \in \Delta \) Thay tọa độ điểm \({M_1},{M_2}\) vào phương trình mặt phẳng \(5x + ky + 4z + m = 0\) ta được hệ \(\left\{ \matrix{ {5 \over 7} + {{72} \over 7} + m = 0 \hfill \cr {{155} \over {10}} + {{9k} \over {10}} + m = 0 \hfill \cr} \right. \Rightarrow k = - 5,m = - 11.\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Phương trình mặt phẳng
|