Loading [Contrib]/a11y/accessibility-menu.js
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

🎁 Gửi góp ý để Loigiaihay.com thay đổi và nhận về những phần quà hấp dẫn 🎁

22/07/2025 - 19/08/2025
Xem chi tiết

Bài 45 trang 126 Sách bài tập Hình học lớp 12 Nâng cao

Cho ba mặt phẳng

Cho ba mặt phẳng \((P):x + y + z - 6 = 0\)

                           \(\eqalign{  & (Q):mx - 2y + z + m - 1 = 0  \cr  & (R):mx + (m - 1)y - z + 2m = 0 \cr} \)

Xác định giá trị m để ba mặt phẳng đó đôi một vuông góc với nhau, tìm giao điểm chung của cả ba mặt phẳng.

Giải

Vectơ pháp tuyến của ba mặt phẳng \((P),(Q),(R)\) lần lượt là :

\(\overrightarrow {{n_P}}  = (1;1;1),\)

\(\overrightarrow {{n_Q}}  = (m; - 2;1),\)

\(\overrightarrow {{n_R}}  = (m;m - 1; - 1).\)

Ba mặt phẳng đôi một vuông góc khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
m - 2 + 1 = 0 \hfill \cr
m + m - 1 - 1 = 0 \hfill \cr
{m^2} - 2m + 2 - 1 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
m = 1 \hfill \cr
m = 1 \hfill \cr
{\left( {m - 1} \right)^2} = 0 \hfill \cr} \right. \Leftrightarrow m = 1 \cr} \)

Gọi I (x;y;z) là giao điểm chung của ba mặt phẳng. Tọa độ điểm I là nghiệm của hệ sau

\(\left\{ \matrix{  x + y + z - 6 = 0 \hfill \cr  x - 2y + z = 0 \hfill \cr  x - z + 2 = 0 \hfill \cr}  \right. \Rightarrow I = (1;2;3).\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Phương trình mặt phẳng