Bài 5.1 trang 75 Sách bài tập (SBT) Đại số và giải tích 11Một tổ có 7 nam và 3 nữ.Chọn ngẫu nhiên hai người. Tìm xác suất sao cho trong hai người đó: Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Tìm xác suất sao cho trong hai người đó: a) Cả hai đều là nữ; b) Không có nữ nào ; c) Ít nhất một người là nữ ; d) Cóđúng một người là nữ. Giải: Số cách chọn là \(C_{10}^2\). Kí hiệu \({A_k}\) là biến cố: “Trong hai ngườiđã chọn, có đúng k nữ”, k = 0, 1, 2 a) Cần tính \(P\left( {{A_2}} \right)\). Ta có: \(P\left( {{A_2}} \right) = {{n\left( {{A_2}} \right)} \over {n\left( \Omega \right)}} = {{C_3^2} \over {C_{10}^2}} = {3 \over {45}} = {1 \over {15}};\) b) Tương tự, \(P\left( {{A_0}} \right) = {{C_7^2} \over {C_{10}^2}} = {{21} \over {45}} = {7 \over {15}}\). c) \(P\left( {\overline {{A_0}} } \right) = 1 - P\left( {{A_0}} \right) = 1 - {7 \over {15}} = {8 \over {15}}\) d) \(P\left( {{A_1}} \right) = {{C_7^1C_3^1} \over {C_{10}^2}} = {{21} \over {45}} = {7 \over {15}}\)
Xem lời giải SGK - Toán 11 - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 5. Xác suất của biến cố
|
Một hộp chứa 10 quả cầu đỏ được đánh số từ 1 đến 10, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Tìm xác suất sao cho quả được chọn:
Có 5 bạn nam và 5 bạn nữ xếp ngồi ngẫu nhiên quanh bàn tròn.Tính xác suất sao cho nam, nữ ngồi xen kẽ nhau.
Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai
Một hộp chứa 10 quả cầu được đánh số từ 1 đến 10, đồng thời các quả từ 1 đến 6 được sơn màu đỏ. Lấy ngẫu nhiễn một quả.