Bài 5.15 trang 221 sách bài tập (SBT) - Giải tích 12Giải các phương trình sau: Giải các phương trình sau: a) \({({{13} \over {24}})^{3x + 7}} = {({{24} \over {13}})^{2x + 3}}\) b) \({(4 - \sqrt {15} )^{\tan x}} + {(4 + \sqrt {15} )^{\tan x}} = 8\) c) \({(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x} = 13\) Hướng dẫn làm bài: a) Phương trình đã cho tương đương với \({\left( {{{13} \over {24}}} \right)^{3x + 7}} = {\left( {{{13} \over {24}}} \right)^{ - \left( {2x + 3} \right)}}\) \(\Leftrightarrow 3x + 7 = –2x – 3\Leftrightarrow x = –2\) b) Vì \((4 - \sqrt {15} )(4 + \sqrt {15} ) = 1\) nên ta đặt \({(4 - \sqrt {15} )^{\tan x}} = t(t > 0)\) , ta được phương trình \(\;{t^2}-{\rm{ }}8t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow \left[ {\matrix{{t = 4 + \sqrt {15} } \cr {t = 4 - \sqrt {15} } \cr} } \right.\) +) Ứng với \(t = 4 - \sqrt {15} \) , ta có \({(4 - \sqrt {15} )^{tanx}} = 4 - \sqrt {15}\) \(\Leftrightarrow \tan = 1 \Leftrightarrow x = {\pi \over 4} + k\pi ,k \in Z\) +) Ứng với \(t = 4 + \sqrt {15} \) , ta có \({(4 - \sqrt {15} )^{tanx}} = 4 + \sqrt {15}\) \( \Leftrightarrow \tan = - 1 \Leftrightarrow x = - {\pi \over 4} + k\pi ,k \in Z\) Vậy phương trình có nghiệm \(x = {\pi \over 4} + k{\pi \over 2},k \in Z\) c) Ta nhận thấy x = 3 là nghiệm của phương trình. Mặt khác, hàm số \(f(x) = {(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x}\) Là tổng của hai hàm số mũ với cơ số lớn hơn 1 (hai hàm số đồng biến) nên f(x) đồng biến trên R. Do đó, x = 3 là nghiệm duy nhất của phương trình. Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
BÀI TẬP ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12
|