Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 53 trang 123 Sách bài tập (SBT) Toán Đại số 10

Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt

Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt

a) \({x^2} - 2x + {m^2} + m + 3 = 0;\)

b) \(({m^2} + m + 3){x^2} + (4{m^2} + m + 2)x + m = 0.\)

Gợi ý làm bài

Phương trình bậc hai \(a{x^2} + bx + c = 0\)có hai nghiệm dương phân biệt, điều kiện cần và đủ là:

\(\left\{ \matrix{
\Delta > 0 \hfill \cr
{x_1}{x_2} > 0 \hfill \cr
{x_1} + {x_2} > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\Delta > 0 \hfill \cr
ac > 0 \hfill \cr
ab < 0 \hfill \cr} \right.\)

a) \({x^2} - 2x + {m^2} + m + 3 = 0\) có \(\Delta ' =  - {m^2} - m - 2 < 0,\forall m\). Do đó không có giá trị nào của m thỏa mãn yêu cầu bài toán.

b) \(({m^2} + m + 3){x^2} + (4{m^2} + m + 2)x + m = 0\) có \(a = {m^2} + m + 3 > 0,\forall m\) và có \(b = 4{m^2} + m + 2 > 0,\forall m\), nên \(ab > 0,\forall m\). Vì vậy không có giá trị nào của m để phương trình đã cho có hai nghiệm dương phân biệt.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.