Bài 61 trang 13 Sách bài tập Hình học lớp 12 Nâng caoCho hình chóp S.ABCD có đáy ABCD Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và cạnh bên SA vuông góc với đáy. Một mặt phẳng \(\left( \alpha \right)\) đi qua A, vuông góc với cạnh SC cắt SB, SC, SD lần lượt tại B’, C’,D’. 1. Chứng minh rằng tứ giác AB’C’D’ có hai góc đối diện là góc vuông. 2. Chứng minh rằng nếu S di chuyển trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A thì \(mp\left( {AB'C'D'} \right)\) luôn đi qua một đường thẳng cố định và các điểm A, B, B’, C, C’, D, D’ cùng cách đều một điểm cố định một khoảng không đổi. 3. Giả sử góc giữa cạnh SC và mặt bên (SAB) bằng x. Tính tỉ số giữa thể tích của hình chóp S.AB’C’D’ và thể tích của hình chóp S.ABCD theo x, biết rằng AB = BC. Giải (h.43)
1. \(SC \bot (AB'C'D') \Rightarrow SC \bot AB'.\) Dễ thấy \(BC \bot (SAB) \Rightarrow BC \bot AB'.\) Từ đó suy ra : \(AB' \bot (SBC) \Rightarrow AB' \bot B'C'.\) Tương tự ta có \(AD' \bot D'C'.\) Như vậy tứ giác AB’C’D’ có hai góc B’ và D’ vuông. 2. Gọi \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( \alpha \right)\) và mp(ABCD) . Do \(\Delta \) thuộc \(\left( \alpha \right)\) nên \(\Delta \bot SC\). Theo định lý ba đường vuông góc, ta có \(\Delta \bot AC\). Hơn nữa, \(\Delta \) nằm trong mp(ABCD) và đi qua điểm A có định, vậy \(\Delta \) là đường thẳng cố định. Do \(AB' \bot (SBC),AD' \bot (SCD) \) \(\Rightarrow AB' \bot B'C,AD' \bot D'C.\) Các tam giác vuông ABC, ADC, AB’C, AD’C, AC’C có chung cạnh huyền cố định AC, suy ra các đỉnh A, B, C, D, B’, C’, D’ đều cách trung điểm O của AC một khoảng không đổi \({{AC} \over 2}.\) 3. Cách 1. Do \(BC \bot (SAB)\) nên SB là hình chiếu của SC trên mp(SAB) và do đó \(\widehat {BSC} = x \). Ta có \(\eqalign{ & V = {V_{S.ABCD}} = {1 \over 3}{a^2}SA(a = AB = BC), \cr & V' = {V_{S.AB'C'D'}} = {1 \over 3}{S_{AB'C'D'}}.SC'. \cr} \) Do ABCD là hình vuông nên dễ dàng suy ra được SB’=SD’\( \Rightarrow B'D'// BD.\) Từ đó dễ thấy \(B'D' \bot (SAC) \Rightarrow B'D' \bot AC'\) \(\Rightarrow {S_{AB'C'D'}} = {1 \over 2}AC'.B'D'.\) Ta có : \(SB = BC\cot x = a\cot x,SC = {{BC} \over {{\mathop{\rm sinx}\nolimits} }} = {a \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}\) \(\eqalign{ & SA = \sqrt {S{B^2} - A{B^2}} = {{a\sqrt {\cos 2x} } \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}},\cr&SB' = {{S{A^2}} \over {SB}} = {{a\cos 2x} \over {{\mathop{\rm s}\nolimits} {\rm{inxcosx}}}}, \cr & SC' = {{S{A^2}} \over {SC}} = {{a\cos 2x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}},\cr&B'D' = BD.{{SB'} \over {SB}} = {{a\sqrt 2 \cos 2x} \over {{{\cos }^2}x}}, \cr & AC' = {{SA.AC} \over {SC}} = a\sqrt {2\cos 2x} . \cr} \) Vậy \(V = {{{a^3}\sqrt {\cos 2x} } \over {3\sin x}},V' = {{{a^3}{{\cos }^2}2x\sqrt {\cos 2x} } \over {3\sin x{{\cos }^2}x}} \Rightarrow {{V'} \over V} = {{{{\cos }^2}2x} \over {{{\cos }^2}x}}.\) Cách 2. Dễ thấy :\({{V'} \over V} = {{2{V_{S.AB'C'}}} \over {2{V_{S.ABC}}}} = {{SB'.SC'} \over {SB.SC}}.\) Từ đó dễ dàng suy ra kết quả cần tìm. Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương I - Khối đa diện và thể tích của chúng
|
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất :
Hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thoi với diện tích S1.