Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 105 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng minh các đẳng thức (với a, b không âm và a ≠b)

Chứng minh các đẳng thức (với a, b không âm và a ≠b )

a) \({{\sqrt a  + \sqrt b } \over {2\sqrt a  - 2\sqrt b }} - {{\sqrt a  - \sqrt b } \over {2\sqrt a  + 2\sqrt b }} - {{2b} \over {b - a}} = {{2\sqrt b } \over {\sqrt a  - \sqrt b }}\);

b) \(\left( {{{a\sqrt a  + b\sqrt b } \over {\sqrt a  + \sqrt b }} - \sqrt {ab} } \right){\left( {{{\sqrt a  + \sqrt b } \over {a - b}}} \right)^2} = 1.\)

Gợi ý làm bài:

a) Ta có:

\(\eqalign{
& {{\sqrt a + \sqrt b } \over {2\sqrt a - 2\sqrt b }} - {{\sqrt a - \sqrt b } \over {2\sqrt a + 2\sqrt b }} - {{2b} \over {b - a}} \cr
& = {{\sqrt a + \sqrt b } \over {2\left( {\sqrt a - \sqrt b } \right)}} - {{\sqrt a - \sqrt b } \over {2\left( {\sqrt a + \sqrt b } \right)}} - {{2b} \over {b - a}} \cr
& = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} + {{2b} \over {\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2} + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{a + 2\sqrt {ab} + b - a + 2\sqrt {ab} - b + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{4\sqrt {ab} + 4b} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{4\sqrt b \left( {\sqrt a + \sqrt b } \right)} \over {2\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}} \cr
& = {{2\sqrt b } \over {\sqrt a - \sqrt b }} \cr} \)

  (với a, b không âm và a ≠b )

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b. Ta có:

\(\eqalign{
& \left( {{{a\sqrt a + b\sqrt b } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {{{\sqrt a + \sqrt b } \over {a - b}}} \right)^2} \cr
& = \left( {{{\sqrt {{a^3}} + \sqrt {{b^3}} } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left[ {{{\sqrt a + \sqrt b } \over {\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)}}} \right]^2} \cr
& = \left[ {{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt {{a^2}} - \sqrt {ab} + \sqrt {{b^2}} } \right)} \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right]{\left( {{1 \over {\sqrt a - \sqrt b }}} \right)^2} \cr
& = \left( {\sqrt {{a^2}} - \sqrt {ab} + \sqrt {{b^2}} - \sqrt {ab} } \right){1 \over {{{\left( {\sqrt a - \sqrt b } \right)}^2}}} \cr
& = {{{{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {{{\left( {\sqrt a - \sqrt b } \right)}^2}}} = 1 \cr} \) 

 (với a, b không âm và a ≠b  )

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.