Câu 1.29 trang 16 sách bài tập Giải tích 12 Nâng caoLưu lượng xe ô tô vào đường hầm được cho bởi công thức Lưu lượng xe ô tô vào đường hầm được cho bởi công thức \(f(v) = {{290,4v} \over {0,36{v^2} + 13,2v + 264}}\) (xe/giây) Trong đó v (km/h) là vận tốc trung bình của các xe khi đi vào đường hầm. Tính vận tốc trung bình của các xe khi vào đường hầm sao cho lưu lượng xe là lớn nhất và tính giá trị lớn nhất đó. Giải \(f'(v) = 290,4.{{ - 0,36{v^2} + 264} \over {{{(0,36{v^2} + 13,2v + 264)}^2}}}.v > 0\) \(f'(v) = 0 \Leftrightarrow v = {{\sqrt {264} } \over {0,6}}\) f đạt giá trị lớn nhất khi \(v = {{\sqrt {264} } \over {0,6}} \approx 27,08\) (km/h) \(f({{\sqrt {264} } \over {0,6}}) \approx f(27,08) \approx 8,9\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
|
Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng AB = 5km
Cũng câu hỏi như trong bài tập 1.31 đối cới các hàm số sau:
Xác định đỉnh I của mỗi parabol (P) dưới đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến