Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.45 trang 15 sách bài tập Đại số và Giải tích 11 Nâng cao

Tìm các nghiệm của phương trình trên khoảng

Tìm các nghiệm của phương trình trên khoảng \(\left( {{\pi  \over 4};{{5\pi } \over 4}} \right)\) rồi tìm giá trị gần đúng của chúng, chính xác đến hàng phần trăm:

           \(\cos x + \sin x + {1 \over {\sin x}} + {1 \over {\cos x}} = {{10} \over 3}\)

Giải

Ta có:      \(\cos x + \sin x + {1 \over {\sin x}} + {1 \over {\cos x}} = {{10} \over 3}\)

               \( \Leftrightarrow \cos x + \sin x + {{\sin x + \cos x} \over {\sin x\cos x}} = {{10} \over 3}\)

Đặt \(t = \cos x + \sin x\)  với \(\left| t \right| \le \sqrt 2 .\) Khi đó \(\sin x\cos x = {{{t^2} - 1} \over 2}\) và phương trình trở thành

                \(t + {{2t} \over {{t^2} - 1}} = {{10} \over 3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

Với điều kiện \(t \ne  \pm 1,\) ta có:

\((1) \Leftrightarrow 3{t^2} - 10{t^2} + 3t + 10 = 0\)

\(\Leftrightarrow \left( {t - 2} \right)\left( {3{t^2} - 4t - 5} \right) = 0\)

Phương trình này có ba nghiệm \({t_1} = 2,{t_2} = {{2 + \sqrt {19} } \over 3}\) và \({t_3} = {{2 - \sqrt {19} } \over 3}.\)

Tuy nhiên, chỉ có \({t_3} = {{2 - \sqrt {19} } \over 3}\) là thỏa mãn điều kiện \(\left| t \right| \le \sqrt 2 .\) Do đó phương trình đa cho tương đương với \(\cos x + \sin x = {{2 - \sqrt {19} } \over 3}\) hay

              \(\cos \left( {x - {\pi  \over 4}} \right) = {{2 - \sqrt {19} } \over {3\sqrt 2 }}\,\,\,\,\,\,\,\,\,(2)\)

Điều kiện  \({\pi  \over 4} < x < {{5\pi } \over 4}\) tương đương với điều kiện \(0 < x   - {\pi  \over 4} < \pi .\) Với điều kiện đó ta có

\((2) \Leftrightarrow x - {\pi  \over 4} = \arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }}\)

       \(\Leftrightarrow x = {\pi  \over 4} + \arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }}\)

Lấy các giá trị gần đúng \({\pi  \over 4} \approx 0,785\) và \(\arccos {{2 - \sqrt {19} } \over {3\sqrt 2 }} \approx 2,160\) ta được \(x \approx 2,95.\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.