Loading [Contrib]/a11y/accessibility-menu.js
TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Bắt đầu sau
  • 06

    Giờ

  • 09

    Phút

  • 13

    Giây

Xem chi tiết

Câu 1.7 trang 7 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng các hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ của mỗi hàm số:

Chứng minh rằng các hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ của mỗi hàm số:

a) \(y = {\sin ^2}2x + 1\)                                                       

b) \(y = {\cos ^2}x - {\sin ^2}x\)

c) \(y = {\cos ^2}x + {\sin ^2}x\)

Quảng cáo

Giải

a) \(y = {\sin ^2}2x + 1 = {{1 - \cos 4x} \over 2} + 1 = {3 \over 2} - {1 \over 2}\cos 4x\). Hàm số này là một hàm số tuần hoàn với chu kì \({\pi  \over 2}\) , Đó là một hàm số chẵn.

b) \(y = {\cos ^2}x - {\sin ^2}x = \cos 2x\), đó là một hàm số tuần hoàn với chu kì \(\pi \) . Nó là một hàm số chẵn.

c) \(y = {\cos ^2}x + {\sin ^2}x = 1\), với mọi \(x\) nên \(y\) là một hàm hằng, do đó với số T ta có \({\cos ^2}(x + T) + {\sin ^2}(x + T) = {\cos ^2}x + {\sin ^2}x\) với mọi \(x\) , đó là một hàm số tuần hoàn nhưng không có chu kì( trong các số T dương không có số T nhỏ nhất). Hàm hằng là một hàm số chẵn.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Xem thêm tại đây: Bài 1: Các hàm số lượng giác