Câu 17 trang 7 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng: Chứng minh rằng: a. \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) + \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) = 2{a^3}\) b. \(\left( {a + b} \right)\left[ {{{\left( {a - b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} - 2ab + {b^2} + ab} \right] = {a^3} + {b^3}\) c. \(\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) = {\left( {ac + bd} \right)^2} + {\left( {ad - bc} \right)^2}\) Giải: a. Biến đổi vế trái: \(\eqalign{ & \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) + \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) \cr & = a{}^3 + {b^3} + {a^3} - {b^3} = 2{a^3} \cr} \) Vế trái bằng vế phải, đẳng thức được chứng minh. b. Biến đổi vế phải: \(\eqalign{ & \left( {a + b} \right)\left[ {{{\left( {a - b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} - 2ab + {b^2} + ab} \right] \cr & = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) = {a^3} + {b^3} \cr} \) Vế phải bằng vế trái, vậy đẳng thức được chứng minh. c. Biến đổi vế phải: \(\eqalign{ & {\left( {ac + bd} \right)^2} + {\left( {ad - bc} \right)^2} = {a^2}{c^2} + 2abcd + {b^2}{d^2} + {a^2}{d^2} - 2abcd + {b^2}{c^2} \cr & = {a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2} = c^2\left( {{a^2} + {b^2}} \right) + {d^2}\left( {{a^2} + {b^2}} \right) \cr & = \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \cr} \) Vế phải bằng vế trái, đẳng thức được chứng minh.
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
|