Câu 1.8 trang 11 sách bài tập Giải tích 12 Nâng caoVới các giá trị nào của a, hàm số Với các giá trị nào của a, hàm số \(f(x) =- {1 \over 3}{x^3} + 2{x^2} + (2a + 1)x - 3a + 2\) nghịch biến trên \(\mathbb R\) ? Giải Ta có: \(f'(x) = - {x^2} + 4x + 2a + 1\) \(\Delta ' = 2a - 5;\Delta ' = 0 \Leftrightarrow a = - {5 \over 2}\) +) Nếu \(a =- {5 \over 2}\) thì \(f'(x) = - {(x - 2)^2} \le 0\) với mọi \(x\in \mathbb R\), \(f'(x)=0\) chỉ tại điểm x = 2. Do đó hàm số nghịch biến trên \(\mathbb R\) +) Nếu \(\Delta ' < 0\) thì phương trình \(f'(x) = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) (giả sử \({x_1} < {x_2}\)). Dễ thấy hàm số f đồng biến trên khoảng \(\left( {{x_1},{x_2}} \right)\). Điều kiện đòi hỏi không được thỏa mãn. +) Nếu \(\Delta ' < 0\), tức là \(a < - {5 \over 2}\) thì \(f(x) < 0\) với mọi \(x\in \mathbb R\). Do đó hàm số nghịch biến trên \(\mathbb R\) Vậy hàm số nghịch biến trên \(\mathbb R\) khi và chỉ khi \(a \le - {5 \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Tính đơn điệu của hàm số
|