Câu 2.134 trang 92 sách bài tập Giải tích 12 Nâng caoCho 3 số dương a, b, c đôi một khác nhau và khác 1. Chứng minh rằng Cho 3 số dương a, b, c đôi một khác nhau và khác 1. Chứng minh rằng a) \(\log _a^2{b \over c} = \log _a^2{c \over b}\) b) \({\log _a}b{\log _b}c{\log _c}a = 1\) c) Trong ba số \(\log _{{a \over b}}^2{c \over b},\log _{{c \over b}}^2{a \over c},\log _{{c \over a}}^2{b \over a}\) luôn có ít nhất một số lớn hơn 1. Giải a) Do \({\log _a}{b \over c} = - {\log _a}{c \over b}\) nên \(\log _a^2{b \over c} = \log _a^2{c \over b}\) b) \({\log _a}b{\log _b}c{\log _c}a = {\log _b}c{\log _c}{a^{{{\log }_a}b}} = {\log _b}c{\log _c}b = 1\) c) Từ câu a) suy ra \(\log _{{a \over b}}^2{c \over b} = \log _{{a \over b}}^2{b \over c};\log _{{b \over c}}^2{a \over c} = \log _{{b \over c}}^2{c \over a};\log _{{c \over a}}^2{b \over a} = \log _{{c \over a}}^2{a \over b}\) Do đó \(\log _{{a \over b}}^2{c \over b}.\log _{{b \over c}}^2{a \over c}\log _{{c \over a}}^2{b \over a} = \log _{{a \over b}}^2{b \over c}\log _{{b \over c}}^2{c \over a}\log _{{c \over a}}^2{a \over b} = 1\) Vì vậy suy ra điều cần chứng minh. Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
|